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Abstract

The relations between two abstract lattice-algebraical approaches to mathematical mor-
phology are investigated. One approach, developed by Heijmans and Ronse, entails the
use of an abelian automorphism group, G, acting transitively on a sup-generating subset of
the lattice, in order to abstract the translation invariance present in concrete morphology
theories. The other, developed by Banon and Barrera, analyzes general mappings between
complete lattices and develops morphological decomposition formulas for such mappings. By
determining the G-invariant forms of the concepts and theorems of the Banon-Barrera the-
ory, the present investigation combines the two theories into a coherent whole and develops
them further.
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1 Introduction

This report details an investigation to develop mathematical tools for designing improved
or more nearly optimal algorithms for automatic/aided target recognition (ATR) in systems
employing such target sensors as synthetic aperture and laser radars (SARs and ladars),
and forward-looking infrared sensors (FLIRs). The investigation specifically concerns the
development of such tools within the field of digital image processing and analysis known
as mathematical morphology, a field that emerged in the early sixties in the Fontainebleau
School of Serra and Matheron as a bottom-up, hierarchical approach to image analysis. Math-
ematical morphology has since found numerous practitioners throughout Europe, the United
States, and South America, has been successfully applied in such diverse fields as materials
science, microscopic imaging, pattern recognition, medical imaging, and computer vision,
and is today one of the principal systematic methodologies employed in image-recognition
research and practice, including ATR.

In previous reports [1-3], I have reviewed and added to the theory that supports the use of
Euclidean morphology in processing both binary and greyscale imagery, and have contributed
a body of results that generalize the topological aspect of mathematical morphology to the
realm of complete lattices that have an upper continuity property, which is dually related to
the concept of a continuous lattice [4].

This report contributes results in line with the recent trend among mathematical mor-
phology theorists to abstract the lattice-theoretical essentials of the theory, and, through
such generalization, enhance the theory’s power for systematic applications. Indeed, much
of the recent work in mathematical morphology has been in developing it as an abstract
lattice-algebraical theory. Prominent examples of this work can be found in Serra [5], Heij-
mans and Ronse [6], Heijmans [7], and Banon and Barrera (8].

In the last cited article, Banon and Barrera present a theory of arbitrary mappings
between complete lattices that accomplishes the following:

- 1. Tt defines the elementary lattice mappings called erosions, dilations, anti-erosions, and
anti-dilations, which in turn generalize the more specific and common morphological
concepts [9] that go by the same names.

2. It defines and develops the concept of a morphological connection, which generalizes
the concepts adjunction and Galois connection that Serra and Achache have used to
fruitfully relate the elementary lattice mappings among themselves.

3. It finally culminates in a general decomposition theorem for complete lattice mappings
in two alternative forms. In one the general mapping is decomposed as a supremum of
certain so-called sup-generating mappings; in the other it is expressed as an infimum
of certain so-called inf-generating mappings. Sup-generating mappings turn out to
be expressable as the infimum of an erosion and an anti-dilation, while inf-generating
mappings are expressable as the supremum of a dilation and an anti-erosion.




The Banon-Barrera article thus succeeds in developing pure lattice algebra along lines that
suggest that mathematical morphology can be profitably viewed as essentially the general
theory of mappings between complete lattices, or at least that the latter is a useful abstract
perspective in which to view the various concrete forms of mathematical morphology (e.g., set
morphology, function morphology, closed Euclidean set morphology, upper semicontinuous
function morphology).

In the cited article of Heijmans and Ronse, and more fully in the book by Heijmans, a
lattice theoretical morphology is developed based on the idea that the role played by trans-
lations in concrete morphologies can be generalized to a complete lattice £ by introducing
an appropriate group, G, of automorphisms of £; more specifically, £ is assumed to have
a sup-generating subset £ (which means that every element x of £ is the supremum of the
elements of £ that preceed z), G is assumed to be an abelian group that acts effectively (as
a group of automorphisms) on £, and the action of G is assumed to be compatible with £
in the sense that G acts transitively on £ and £ is G-invariant. This approach produces a
theory of G-invariant complete-lattice mappings; leads to abstract definitions of G-invariant
erosions, dilations, etc; results in a decomposition theorem for G-invariant complete-lattice
mappings similar to that of Banon and Barrera; and is intuitively closer to the more concrete
morphology theories.

This report investigates the relations between these two approaches, and, by determining
the G-invariant forms of the concepts and theorems of the Banon-Barrera theory, combines
them into a coherent whole. Section 2 gives a summary exposition of the Banon-Barrera
theory; the reader is forewarned, however, that this material is rife with technicalities, and
that I present it without the proofs given in the cited Banon-Barrera article. My purpose in
presenting this theory is not to give a didactic exposition, but to intelligibly set it down as
succinctly as possible so that I can later recall and use it. I introduce the group theoretical
approach of Heijmans and Ronse in section 3, and then set about, in sections 3.2 to 3.4—
which contain my contributions to this research area—to develop this approach in light of the
results of the Banon-Barrera theory, by determining the group-invariant form of the latter.
Section 4 then gives three examples from standard mathematical morphology that illustrate
the combined theory; several original concepts and results, needed to relate the examples to
the theory, are contained in this section. Finally, in section 5, I present a conjecture that has
an important bearing on the potential enrichment of the combined theory that could accrue
from the additional structure possessed by M-topologized upper continuous lattices [3].

For the theory and terminology of lattices and posets (partially ordered sets), I follow
Birkhoff [10]. The definitions and facts below are given for reference.

(1) A sup-lattice is a poset in which every finite subset has a least upper bound or supre-
mum. An inf-lattice is a poset in which every finite subset has a greatest lower bound
or infimum. The morphisms of sup-lattices (inf-lattices) are the mappings of £
into M, where £ and M are sup-lattices (inf-lattices), that preserve finite suprema
(finite infima). Inf- and sup-lattices are referred to collectively as semilattices. An
inf-lattice (sup-lattice) in which every nonempty subset has an infimum (supremum)
is called complete. A lattice in which every nonempty subset has both an infimum
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and a supremum is called a complete lattice. The morphisms of complete inf-lattices
that preserve arbitrary infima are called (meet-) complete; similarly, the morphisms
of complete sup-lattices that preserve arbitrary suprema are called (join-) complete.
The homomorphisms of complete lattices that preserve arbitrary infima (suprema) are
also called meet-complete (join-complete), and those that preserve arbitrary infima
and suprema are called complete homomorphisms.

(2) A one-to-one lattice homomorphism is a lattice isomorphism, a one-to-one semilattice
morphism is a semilattice isomorphism, and the isomorphisms of complete semilattices
and complete lattices are complete.




2 Mappings Between Cofnplete Lattices

Let £, and L, be complete lattices and let Oy = [,§ ! denote the set of mappings of £, into
L. In the special case where £; = Lo = L, we let O = O(L) = L and call the mappings
in O operators on L. We give O;, the pointwise ordering =<, by defining

Y=, 0 < P(z) X p(z) forall z € L;.
More generally, if L and M are lattices, then ML is partially ordered by =,.

Remark 1 If L and M are lattices and M is complete, then MT is a complete lattice
relative to <,. In particular, O3 is a complete lattice relative to =<,; in fact, if A C Oy,

then (sup A)(z) = sup{9(z) : ¥ € A} and (inf A)(z) = inf{y(z) : ¢ € A}.

The universal bounds o and e of O;, are the mappings defined for all z € £; by o(z) = o
and e(z) = e, where o and e are the universal bounds of £,. We denote the universal bounds

of £; by O and E. Thus O(y) = O and E(y) = F, each for all y € L, define the universal
bounds of ©O,;. Next we define the concept of a complete sublattice.

Definition 1 If M is a sublattice of a complete lattice L, then M is called a complete
sublattice of L if M is complete and the following hold.

1. infyy B=infy BVY BC M.
2. supy, B=sup, BY BC M.

M is called a meet-complete [join-complete] sublattice of L if only (1) [(2)] holds. Thus
M is a complete sublattice if and only if M is both meet-complete and join-complete.

Remark 2 If M is a sublattice of a complete lattice L, and if M is complete, then M is a
complete sublattice of L if and only if infy B and sup; B lie in M for every subset B of M.

Remark 3 If M is a sublattice of a complete lattice L, then M is a meet-complete (join-
complete) sublattice of L if M has a universal upper (lower) bound and every subset B of M
satisfies infr, B € M (sup, B € M).

2.1 Increasing and Decreasing Mappings

Definition 2 Let X and Y be posets and let f : X — Y.
1. f is called increasing if z,2' € X and z < 2/ = f(z) < f(2').
2. f is called decreasing if z,2' € X and z <2’ = f(2') < f(=).

Isotone and antitone are synonyms for increasing and decreasing.




We denote the increasing and decreasing mappings in Oy, by Of;, and O1,, respectively.
Proposition 1 Of; and O, are complete sublattices of O2.

Proposition 2 Ify € Oy, then, of the following siz statements, the first three are equivalent
and the last three are equivalent.

) 1. 9 is increasing.

Y(inf B) X infyp(B) V B C L,.

supy(B) X ¢(supB) V B C L;.
. 1 is decreasing.

Y(sup B) < inf¢(B) ¥V B C L;.
sup $(B) < ¥(inf B)Y B C L.

S T W e

2.2 Erosions, Dilations, Anti-Erosions, and Anti-Dilations
Definition 3 If ¢ € Oy, then ¢ is called
1. an erosion if v is a meet-complete inf-lattice morphism, i.e., if
Y(inf B) =infy(B) V B C L;,
2. a dilation if v is a join-complete sup-lattice morphism, i.e., if
(sup B) =sup(B) V B C Ly,
3. an anti-erosion if ¢(inf B) = sup¢(B) V B C L,
4. an anti-dilation if ¢(sup B) = inf¢(B) VY B C L;.

Let us adopt the suggestive notations &5, Do, &2, and Dy, for the erosions, dilations,
anti-erosions, and anti-dilations, respectively, in Oj,.

Proposition 3 Then we have the following:

| 1. &5 and Dy are subsets of OF; 512 and 7512 are subsets of Op,.
2. €12, Dho, 512, and Dy, are complete lattices relative to =,.
| 3. &1, Dy, 512, and Dy, are not complete sublattices of Ors.

4. &9 and '1512 are meet-complete sublattices of Oys.

5. D1 and & are join-complete sublattices of Os. ‘
Proof &, and D1y (D12 and 512) are inf-closed (sup-closed), e € &2, 0 € Dy3, 0 € 12, and
e € Diy. In addition, infg,, = info,,, supp,, = supp,,, infz = info,,, and supg, =
SUPp,,; but supg,, # supe,,, infp,, # info,,, supz , # supe,,, and infz  # info,,.




2.3 Inf- and Sup-Separable Mappings
Definition 4 Let X and Y be posets, and let f: X — Y.

1. f is called sup-separable if: Given a,b,x € X such that a X z X b, then

f(z) Xy forally € Y such that f(a) Xy and f(b) <X y.

2. f is called inf-separable if: Given a,b,x € X such that a < x X b, then

y =< f(z) for ally € Y such that y < f(a) and y <X f(b).

Proposition 4 If ¢ € Oyq, then ¥ is
1. inf-separable if and only if v(inf B) A ¢(sup B) < inf¢(B) V B C Ly,
2. sup-separable if and only if supy(B) < ¢(inf B) V ¢(sup B) V B C L;.
Remark 4 Every ¢ € Of, U Og, is both inf- and sup-separable.

Proposition 5 If L and M are lattices and M is complete, then the inf-separable (sup-
separable) mappings of L into M form a complete lattice relative to <X,. In particular, the
inf-separable (sup-separable) mappings in O13 form a complete lattice relative to <,.

2.4 Inf- and Sup-Generating Mappings
Definition 5 If v € Oo, then ¥ is said to be

1. inf-generating if sup ¥(B) = ¢ (inf B) V ¢(sup B) for all nonempty B C L,,
2. sup-generating if ¥(inf B) A ¢(sup B) = inf ¢(B) for all nonempty B C L;.
Let A5 and M, denote the sup- and inf-generating mappings in O;,, respectively.

Proposition 6 Then we have the following:
1. £5UD1y C Ay and Dip U &1y C My,
2. If Y € Aya, then ¥ is inf-separable; if v € My, then v is sup-separable.
3. Ay is a meet-complete sublattice of O12 and M,y is a join-complete sublattice of Oys.
4. Neither Ajo nor Mis is a complete sublattice of O1q.

5. The universal bounds of both A1 and M1y are o and e.



2.5 Galois Connections and Adjunctions

Definition 6 Let X and Y be posets, let f: X — Y andletg:Y — X. If f and g are
decreasing, then the pair (f,g) is called a Galois connection between X and Y if for all

z€ X andy € Y we have that x < (go f)(z) and y X (f o g)(y).

Proposition 7 Let X and Y be posets, let f : X — Y, and let g: Y — X. Then (f,9)
is a Galois connection if and only if x < g(y) <= y =2 f(z) V (z,y) e X x Y.

Definition 7 An adjunction between X and Y is a Galois connection between X and Y;
that is, if X and Y are posets, then a pair (f, g) of functions, f : X — Y andg:Y — X,
is an adjunction between X and Y if and only if f and g are increasing and, for allx € X

and y € Y, we have that (go f)(z) Rz and y X (f o g)(v).

In the above, X denotes the dual of the poset X—i.e., the set X with the reverse ordering.
An adjunction (Galois connection) between X and X is said, more simply, to be on X.

Proposition 8 Let X and Y be posets, let f : X — Y, and let g: Y — X. Then (f,9)
is an adjunction between X andY if and only if g(y) Rz <= y 2 f(z) V (z,y) €e X x Y.

Proposition 9 (Achache) The set of Galois connections between L1 and L; is the graph of
a lattice isomorphism between D1y and Day. More specifically: If ( ,$) is a Galois connection
between L1 and Ls, then the following hold.

(3.) SG ﬁlg and ¢ € 1521.
(b) dz)=V{yeLy:z =3y} VzeLl qnd Sy)=V{zeLly:y=8@x)Vye L.

Furthermore, to each & € D1y there corresponds a unique & € Dy such that (5,6) is a Galois
connection between El and Ly; conversely, to each ¢ € 1321 there corresponds a unique
6 € Dyy such that ( ,$) is a Galois connection between Ly and Lo; and finally, the one-to-
one correspondence thusly described between Di» and Dy is a lattice isomorphism.

Proposition 10 (Serra) The set of adjunctions between L, and Ly is the graph of a dual-
lattice isomorphism between E15 and Day. More specifically: If (e,<) is an adjunction between
Ly and Ly, then the following hold.

(a) € € &9 and ¢ € Dy
(b) e(z)=V{y e La:s(y) 2z} Vz el ands(y)=N{z € Ly:y=<e(x)} Vye€E L.

Furthermore, to each € € &5 there corresponds a unique ¢ € Dy such that (e,5) is an
adjunction between Ly and Lo; conversely, to each ¢ € Dy; there corresponds a unique
€ € &9 such that (e,5) is an adjunction between Ly and Lo; and finally, the one-to-one
correspondence thusly described between 15 and Doy is a dual-lattice isomorphism.




2.6 Morphological Connections

Definition 8 If X andY are posets, g,h: Y — X, and f : X — Y is inf-separable, then
(f,(g,h)) is called a morphological connection between X andY if the following hold.

1. For ally,y €Y such that g(y') X h(y), y 2y = g(y) 2 9(¢/) and h(y') = h(y).
2. (go f)(z) Xz and z <X (ho f)(z) for allz € X.
8 y=X(fog)ly) andy =< (foh)(y) for ally €Y such that g(y) = h(y)-

Proposition 11 Let X and Y be posets, let g)h :' Y — X, and let f : X — Y be
inf-separable. Then (f,(g,h)) is a morphological connection between X and Y if and only if

g(y) Rz =<h(y) = y=f@)V (z,y) € X xY.

Remark 5 Let L; be a complete lattice, let X be a poset, and let O and E denote the
universal bounds of the complete lattice L. Then we have the following:

1. (¥, (0, B)) is a morphological connection between Ly and X if and only if (v, B) is a
Galois connection between L, and X.

2. (¢, (a,E)) is a morphological connection between Ly and X if and only if (¢, ) is an
adjunction between L; and X.

Recall that we are denoting the universal bounds of £; by O and E.

Definition 9 Let A, denote the set of pairs (a, ) € (O x Og) such that
a(yo) 2 B(yo) for some yo € L2 = a(y) = E and B(y) = O for ally € L,

that is, such that either a <, B orao=E and B = O. Also, let DDy, and 8521, respectively,
denote the sets (D21 X D21) ﬂ Agl and (821 X 821) N A21

Definition 10 If ¢y € O;5 and a, 8 € Oa1, then define the following related mappings.
Dy) =Mz €Ly y P(z)} Vye€ Ly
Py)=V{z €L y=y@)} Vye L.
)=Mz € Ly:9¥(z) 2y} Vye L.
)

~

Co [\
@l l‘g 2|

(y
() =V{z e Ly :Y(@=) Iy} VyecL,.

Blz)=V{y€ Ly :aly) 2z 2 B(y)} Vz € L.
Bx)=NMy€Ly:aly) 2z = B(y)} VzeL.

SRS
Q

Q
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Also, let < be the partial ordering of Oa1 x Oq, defined by
(a,0) <(d,f) <= o Z,aand =X, 0.

Definition 11 If £; and Ly are complete lattices, let MCi2(A21) denote the set of morpho-
logical connections (1, (o, 8)) between Ly and Ly such that (o, B) € Ag;.

Theorem 1 (Banon-Barrera) If (¢, (a, 8)) € MCia(Aa1), thena = ¢, B =¥, ¥ = af,
P € A, and (a,f) € DD,1. In fact, there is a unique (¢, (a,B)) € MCi(Ay) for
every ¥ € Apy; that is, the set of (¥,(, B)) € MCia(Aa1) is the graph of the function
¥ — (-9, -¥) that maps Ay to DD,;. Indeed we have more:

(a) ¥ — (¢, ¥) is a bijection of A1y onto DDy, whose inverse is (a, B) — af.
(b) v — (-,9-) is a bijection of My, onto EEy, whose inverse is (a, §) — af.

©) (@, (e, B)), (¥, (e, 8)) € MCi3(An) = (¥ Zp ¥ = (a,f) < (¢, 8)).

Thus (A12, =,) and (Mig, X,) are poset isomorphic to (DD, <) and (E€x, <), respectively,
and it consequently follows that

(d) DDy, and EE,y are complete lattices relative to <.

(e) Y +— (lb.v 1) is a lattice isomorphism of Az onto DD,

) Y +— (¥, 1-) is a lattice isomorphism of M, onto EEy.

Corollary 1 The Achache-Serra propositions are corollaries of this theorem. Specifically,

1. The set of Galois connections between L, and Ly is the graph of the lattice isomorphism
between Do and Doy given for all § € Dis and € Dy by 6 — -6 and & +— OK.

2. The set of adjunctions between L1 and Ly is the graph of the dual-lattice isomorphism
between E19 and Dy given for all e € £19 and ¢ € Doy by € — € and s — gE.

2.7 Banon-Barrera Decompositions

Proposition 12 If ¢ € Oy,, then we have the following.

(a)  is sup-generating if and only if there is an € € E12 and a b € Dy such that ¥ = e A .
(b) v is inf-generating if and only if there is a d € D15 and an € € Ep such that p =6 VE.
As a consequence of these results we obtain, in particular, the following:

(c) If (s,3) € DDay, then <€ € Ay and can therefore be expressed as the infimum of an
erosion and an anti-dilation in Oya; such an expression, in fact, is ¢¢ = cE A OC.
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(d) If (€¢) € EEy, then & € Mi, and can therefore be expressed as the supremum of a
dilation and an anti-erosion in Oyo; such an expression, in fact, is €€ = EE V Oe.

Proposition 13 The subsets Ao and Mis of O12 are, respectively, sup-generating and inf-
generating. That is, ¥ = V{\ € A12: A =, ¥} = A{p € Mg : ¢ =, u} for all ¢ € Opa.

Definition 12 Let P(L;)*? denote the set of functions F : Lo — P(L1), and let K denote
the partial ordering of P(L1)*? defined by F K F' < F(y) C F'(y) for ally € L,.

Note that P(L;)*? inherits the complete lattice structure of P(L;) (the power set of £,).

Definition 13 Let -K : Oy — P(L£1)** and K- : O15 — P(L1)*? be defined for ¢ € O1p
and y € Ly by -K(¥)(y) = {z € L1 :y 2¢(2)} and K- (¥)(y) = {z € L1 : ¢(z) 2y} We
call -K(v) and K - () the left-kernel and right-kernel, respectively, of 9.

Definition 14 Let &, & : P(L£1)*? — Oy be defined for F € P(L1)*? and z € L, by
BF)z)=V{yeLr:z e Fly)} and w(F)(z)=N{yeLe:zeFy}
We say that the mappings ®(F) and k(F) are derived from F. |

Proposition 14 For the pairs (-K,R) and (K-, k) we have the following.

1. -K maps O14 one-to-one into P(L;)*?, and & is the inverse of -KC on -K(O12); that is,
R(-K(¥)) = for all € O1a.

2. K- maps Q15 one-to-one into P(L1)*?, and & is the inverse of K- on K - (O13); that is,

&K - (%)) =4 for all € Ora.

3. Ifh,p € Osg, thenp <, ¢ <= K(¢) < -K(p) <= K- (¥) < K- ().

Definition 15 A function I defined on Lo with values in P(L,) is called an interval func-
tion if Z(y) is either O or a closed interval of Ly for ally € L.

Definition 16 For each (a, 8) € Ay, define the interval function [a, 5] fory € Ly by

a8l = { PO %) =50

To each interval function I, associate the unique (az,fr) € Aoy given for all y € Ly by
az(y) = inf Z(y) and Br(y) = supZ(y); ar and Bz are called the extremities of 7.

12




Remark 6 The mappings (o, ) — [a, (] and I —— (ag,fz), respectively, on Agy and
the set of interval functions, are reciprocal, i.e., under the first, (az, Br) — I (or otherwise
stated, [az, Bz] = T), and under the second, [a, 8] — (a, B).

Proposition 15 If ¥ € Oy5, then we have the following.
1. s sup-genemt?ng if and only if its left-kernel -K(v) is an interval function.
2. v is inf-generating if and only if its right-kernel KC - () is an interval function.
3. Y €A== -IC(w') = [¢,9¥] and ¢ € My => K- (¢) = [¢-, 9]

Theorem 2 (Decomposition theorem) If ¢ : £1 — Lo, then we have the following.

(a) ¥ = V{EAOZ: (5,3) € DDy and [5,3] < -K()}.

(b) ¥ = MEEV Oc : (7,¢) € £5y1 and [£, < K- (1)},

Specialized versions of the above theorem can be developed for the inf-separable, sup-
separable, increasing, and decreasing mappings with the aid of the following concepts.

Definition 17 Ify € Oy, F € P(L2)*1, and O ¢ F(L,), then the expression y(€)F is used
as shorthand for v(y) € F(y) for all y € Ly. In addition, it is said that

1. F is convex if o, B(€)F and a <X f = [0, B] < F.
2. F is V-hereditary if a(€)F and a X = B(€)F.
Remark 7 F is V-hereditary => F is convex.

Proposition 16 If i € Oy, is inf-separable (sup-separable), and if there is an x € L, such
that Y(z) = e (Y(z) = 0), then -K(¢) (K- (¢)) is convez. In addition, we have the following.

1. If ¢y € Of; and ¥(E) = e, then -K(v) is V-hereditary.
2. If Y € Oy and ¢¥(O) = e, then K - (¢) is V-hereditary.

The following is now a corollary of Theorem 2.

Corollary 2 (Special decompositions) Let v : £; — L.

(a) If 9 is inf-separable and there is an x € Ly such that ¥(z) = e, then

¥ =\/{SEAOZ: (,3) € DDy and ¢,3(€) - K(3)}.
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(b) If ¢ is increasing and such that ¥(E) = e, then
v =\V{sE:s€Dyandg(€) L)} and ¢ = \{Oc: €€ &y and (€)X ()}

(c) If ¢ is sup-separable and there is an x € L, such that ¥(x) = o, then

= N\{EEV Oc: (§,€) € £y and €, e(€)K - (1)}

(d) If ¢ is decreasing and such that ¥(O) = e, then

= \/{0%:¢ € Dy and 5(€) - K(¥)} and o = \{EE: €€ &y and €)X - ()}

With apologies for its density, this completes my synopsis of the Banon-Barrera theory.
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3 Heijmanns-Ronse Lattice Morphology

I now take up the group theoretical approach of Heijmanns and Ronse to complete-lattice
morphology. For this it is well to start with the general concept of a group action on a set.

Remark 8 Let X be a nonempty set and let T(X) denote the set of transformations of X,
i.e., the set of bijections of X onto X. Then (T (X), o) is a group called the transformation
group of X. A subgroup of (T(X),o0) is called a group of transformations of X.

Definition 18 Let X be a nonempty set, let (G,-) be a group, let H : g — 0, be a
homomorphism of G onto a group ({0, : g € G},0) of transformations of X, and define the
mapping 0 : Gx X — X by o(g,z) = 04(x). Then (G, o) is called a group action on X.

Definition 19 Let (G, o) be a group action on X.

1. If o4(z) = z for all x € X implies that g is the identity element of G, then (G,0) is
called an effective group action on X.

2. If for all z,2' € X, there exists-a g € G such that o (x) = z', then (G, 0) is called a
transitive group action on X.

Remark 9 Let (G,0) be a group action on X.
1. ogp =0400, forall g,h € G.

2. If € is the identity element of G, then o is the identity element of ({0, : g € G},0),
i.e., o € T(X) maps X onto itself identically.

8. 041 =0, forallg €G.

4. The homomorphism H : g — o, is an isomorphism if and only if (G, o) is an effective
group action on X.

Remark 10 If ({0, : @ € A},0) is a group of transformations of a set X, and if (G,-) is a
group isomorphic as such to ({4 : @ € A},0), then there is an effective action (G,0) on X
such that ({og : g € G},0) is group isomorphic to ({0, : o € A}, 0).

If X is a set with a mathematical structure (relational, algebraic, topological, etc), then
the invariance properties of that structure are essentially specified by the group Aut(X) of
automorphisms of X, that is, for instance, by the group of poset automorphisms if X is a
poset, lattice automorphisms if X is a lattice, homemorphisms if X is a topological space.
Indeed, the invariance properties of X’s structure can be studied in detail by analyzing
Aut(X) into its subgroups, and herein lies the main utility of group actions, for each subgroup
G of Aut(X) acts effectively on X via the mapping (g,z) — g¢(z). Heijmanns and Ronse
begin by applying the automorphism subgroup/group-action concept to complete lattices.
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Definition 20 Let Aut(L) denote the automorphisms of a lattice L. If (G, o) is an effective
group action on L, and if o, € Aut(L) for all g € G, then (G,0) is said to act effectively
as a group of automorphisms on L.

Remark 11 IfG is a group, L is a lattice, and o : G x L — L, then (G, 0) acts effectively
as a group of automorphisms on L if and only if the following hold.

1. g — 04 is an isomorphism of G.
2. o4 is an automorphism of L for each g € G.

Since the automorphisms of a lattice £ form a group under composition, {0, : g € G} is a
subgroup of Aut(£) whenever (G, o) acts effectively as a group of automorphisms on £. On
the other hand, every subgroup G of Aut(L) acts effectively as a group of automorphisms on
L via the mapping o : (g,z) — g(x), as already noted. Thus the two concepts “subgroup
of Aut(L)” and “effective action as a group of automorphisms” are essentially the same.

An example of this concept is provided by Euclidean morphology, whose basic object is
the complete lattice P(R?) of subsets of the Euclidean plane (R?), where set intersection
and union are the meet and join operations. It is indeed readily seen that the group of
planar translations, which plays an essential role in Euclidean morphology, acts effectively
as a group of automorphisms on P(%2). The innovation of Heijmanns and Ronse arose from
their discovery of how this type of action could be abstracted to the general complete lattice
L. They accomplished this by assuming that £ is not only acted upon effectively by an
abelian group, G, of automorphisms, but that £ also has a sup-generating subset ¢, and
that £ and G satisfy certain compatibility conditions, which are as follows.

Definition 21 If £ is a complete lattice with a sup-generating subset £, if (G, o) acts effec-
tively as a group of automorphisms on L, and if G is an abelian group, then we say that
the action (G, o) is {~-admissable if the following hold.

1. ¢ is G-invariant, i.e., 04(€) € £ for allg € G and £ € £.
2. (G,0) acts transitively on ¢, i.e., if (§,m) € £ x £, then 04(§) =n for some g € G.

Proposition 17 If £ is a complete lattice with a sup-generating subset £, and if (G, o) acts
¢-admissably on L, then we have the following.

1. o and e are not in ¥£.

2. Every atom of L lies in ¢.

Proof (1) o,(0) = 0 and oy(e) = e for all g € G because the o, are lattice automorphisms.
Hence o,e ¢ £ by (2) of the above definition. (2) A stronger result is, in fact, available
from general lattice theory; namely: If L is a lattice with a universal lower bound o
and a sup-generating subset X, then every atom of L lies in X'. The proof of this is as
follows. If Z is an atom of L, then Z = sup{n € X : n < Z}. Since Z is an atom, each
n € X such that n < Z must be either o or Z. Therefore, if Z ¢ X, then Z is either
sup{o} = o or sup@ = o. Since Z # o, this is absurd. Hence Z € X.
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Proposition 18 (Heijmans-Ronse) If £ is a complete lattice with a sup-generating subset £,
and if (G, o) acts £-admissably on L, then (G, o) acts regularly on Z, i.e., if (§,n) € { x ¢,
then 0,(£) = n for a unique g = g¢, € G. In other words, there is a function (§,n) — oy,
on £ x £ with values in {0, : g € G} (equivalently, with values in G) such that o4 () = 7.

Corollary 3 The function defined on £x € by (§,m) — ge, is onto G; in fact, for each fized
¢ € £ the function n +—— ge, is a bijection of £ onto G.

Proof It is clearly sufficient to prove the second assertion. Given g € G and £ € ¢, we have
that o4(€) € £ by the G-invariance of £. Let 1) be the element of £ equal to g4(¢). Then
it follows from the uniqueness assertion of the proposition that g = g¢,. Hence g is in
the range of n —— g, for all £ € £. Now suppose that ge, = g¢c. This implies that
Ogen = Ogec» Which in turn implies that n = oy, (§) = 04, (§) = (. Hence n+— g¢, is a
bijection of £ onto G for each fixed & € £.

Definition 22 Let £ be a complete lattice with a sup-generating subset £, and let (G, o)
act £-admissably on L. With respect to a fixed reference element p € ¢, define the
operators 7, = g,, forn € £ and denote the set {7, : n € £} by T.

Remark 12 7+ 7, is a bijection of £ onto T and (T,o) = ({0, : g € G},0).

Definition 23 Let L be a complete lattice with a sup-generating subset £, let (G, o) act -
admissably on L, and let p € £ be a fized reference element. With respect to p, define an
addition operation + in ¢ by setting £ + 1 = 7c7,(p) = Te(n) for each (§,m) € £ x £.

Since 7¢7,(p) = T, 7e(p) = T(§) = n+E&, we see that the + operation is commutative. Indeed,
(¢,+) is a commutative group with p the additive identity and —¢ = 77'(p) the
additive inverse of £. In fact we have the following.

Proposition 19 The bijection n — 7, of £ onto T is a group isomorphism of (£,+) onto
(T,0) and a poset isomorphism of (£, =) onto (T, =<,).

Proof If £, € £, then & + 1 —— 7Ty, Since Tein(p) = & + n = 7¢7,(p), it follows that 7¢4,
and 7,7, are the same automorphism. Hence 1 +—— 7, is a group isomorphism.

To complete the proof we show that if £,n € £, { <7, and z € L, then 7¢(z) < 7,(z).
For this, first note that £ X n = A+&=7\(§) X 7a(n) = A+nfor all A € £. Since +
is commutative, we therefore have £ + A = 7¢(X) < 7,,(A) =n+ A, i.e,, the proposition
holdsif z € £. If x € L, we have 7¢(z) = e(V{p €l : p < z}) =

Vi) :petip=sa=\{+p:peltip=zz} =

V{n+p:petp=z}=m2).
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3.1 G-Invariant Lattice Mappings

The next step in the Heijmanns-Ronse approach is to study the class of G-invariant lattice
mappings. Consider first the invariant operators in O = O(L).

Definition 24 If L is a complete lattice and (G, o) acts as a group of automorphisms on L,
then a ¥ € O(L) is said to be G-invariant if Y(oy(z)) = o4(¥(z)) for allz € L and g € G.

To define invariant mappings in O3 or O,1, assume that G is a group that acts effectively
as a group of automorphisms on both £; and £; that is, assume there are mappings

§:GXLy— Ly and 0:Gx Ly — Ly

such that (1) g — s, and g — 0, are isomorphisms of G, (2) s, is an automorphism of
L, for all g € G, and (3) o, is an automorphism of L, for all g € G.

Definition 25 Let L, and Ly be complete lattices, and let G be a group that acts effectively
as a group of automorphisms on both L1 and Lo. Then we adopt the following definitions.

1. A € Oz is said to be G-invariant if Y(sy(z)) = g,(¢(x)) forallz € L, and g € G.
2. Ay € Oy is said to be G-invariant if ¥(o,(y)) = s,(¥(y)) for ally € Ly and g € G.

The above definitions become quite fruitful when it is further assumed that £, has a sup-
generating subset £ such that (G, o) acts f-admissably on Ly; in the case of operators on L,
the like assumption is: £ C L is sup-generating and (G, o) acts ¢-admissably on L. (Keep
in mind that ¢-admissable actions (G, o) require the commutativity of G.) Unless otherwise
stated, then, we will assume the following for the remainder of this report.

1. £; and L, are complete lattices.

2. G is an abelian group that acts effectively as a group of automorphisms on both £;
and L, via the maps s and o.

3. L, has a sup-generating subset ¢ such that (G, o) acts f~admissably on L.
4. pis a fixed reference element of £.

Besides the operators 7, = 04, , 7 € {, we additionally define #, = s,, for each n € £ and
denote the set {6, : n € £} by ©. While

(T,O):({Tn:néf},o)z({O'g:gEG},O)Z(G,-)

is just another way to designate the pertinent automorphism group of £, (where ~ means
“is group isomorphic to”), we likewise have that

(©,0) = ({,:nel}0)={s,:9€G}0) (G,

is just another way to designate the corresponding isomorphic automorphism group of £;.
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Proposition 20 Indeed, we have the following:
1. (©,0) is an abelian group of automorphisms of L;.
2. T, 0, is a group isomorphism of (T, o) onto (©,0).
3. O, — 54, is a group isomorphism of (©,0) onto ({s, : g € G},0).
4. n— 0, is a group isomorphism of (£,+) onto (©,0).

Proof (1) Since by definition 6, = s,, for all n € ¢, it is clear that © is a set of au-
tomorphisms of £;. The rest of (1) is established in (2) below. (2) 7, — 6, is
clearly onto ©. If 6, = 6, then s,,, = sg,., and it follows that g,, = g, because
g — 84 is a group isomorphism. Since n — g, is a bijection of £ onto G, it follows
that 7 = &, and hence that 7, — 6, is a bijection of T onto ©. If ,{ € ¢, then
Ty O Tg = Tyyg 077+5 = Sgpin+e) = S9om9pc = Sgpn © Sgpe = 0’7 °© 95‘ (3) 977 " Sgpn is
clearly a bijection of © onto {s, : g € G}; moreover, if ,£ € £, then 6,00, = sy, 05y,
by definition. (4) Since 7 — 7, is a group isomorphism of (¢, +) onto (T, o), and since
T, — 0, is a group isomorphism of (T, o) onto (©, o), it is clear that n — 6, being
a composition of group isomorphisms, is a group isomorphism of (¢,+) onto (©, o).

Corollary 4 Thus we obtain the following equivalent characterizations of G-invariance.
1. ¥ € Oy3 is G-invariant if and only if ¥(6,(z)) = 7,(¥(x)) for allz € £, and n € ¢.

2. ¢ € Oy is G-invariant if and only if ¥(7,(y)) = 0,(¥(y)) for ally € L2 and n € £.

3.2 G-Invariance and the Banon-Barrera Theory

Theorem 3 Adjunctions, Galois connections, and morphological connections between L,
and Ly have the following G-invariance properties.

1. If (e,<) is an adjunction between L, and Lo, then the following are equivalent.

(a) € is G-invariant.

(b) ¢ is G-invariant.
2. If (8, S) is a Galois connection between L, and Ly, then the following are equivalent.

(c) & is G-invariant.

(d) ¢ is G-invariant.
3. If (¥, (o, B)) € MC12(A21), then the following are equivalent.

(e) ¥ is G-invariant.

(f) o and B are G-invariant.
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Proof (1) Assume first that € € &) is G-invariant. For all y € £, and all g € G we have

so(sW)) = sy \{z € L1:y 2e()} = N{so(z) : 7 € L1,y 2 ()},

since automorphisms commute with A. Put s,(z) = 2. Then z = s,-1(2’) so that
N{so(z) :z € L1,y Ze(x)} = N{z' € L1 :y 2 e(sp-1(2)} =

Nz’ € L1:y 2 0,1(e(@)} = N2’ € L1:0,(y) 2 e(a’)} =
€(ag(y)) = s(og(y))-
Hence ¢ € Ds; is G-invariant. The rest of the proof of (1) should now be clear.

(2) Assume first that 6 € Dy is G-invariant. For all y € £, and all g € G we have
$¢(S(y)) = V{se(z) : € L1,y <X 6(z)}, because automorphisms commute with /. The
proof that (c) = (d) proceeds as above, and the proof of the converse is similar.

(3) Assume first that o and 3 are G-invariant. For all z € £, and g € G we have
o,(¥(z)) = 0, (aB(x)) = V{oo(¥) : v € L2,0(y) 2z X B(y)}-
Put 0,(y) = ¥'. Then y = 0,-1(y') so that
os(¥(z)) = V{y' € L2: a(0,1(y)) X 2 < Blog-1(y))}

=V € La:5-1(ay) 22 =X 50-1(B((¥)} = V{Y € L2: ay) < s4(2) < B((3)}

= _04—5(39(@) = Y(sq4(2)).
Thus ¢ € A is G-invariant. Now assume that ¥ € Aj, is G-invariant. For all y € £,
and g € G we have sy(a(y)) = A{sqs(z) : 2 € L1,y X ¢¥(z)} and

$o(B(y)) = Vse(2) : 2 € L1,y X 9(2)}.

From these it is readily verified as above that a € Dy; and 8 € Dy are G-invariant.

Definition 26 Let us adopt the following terminology.

1

If € and ¢ are G-invariant and (€.<) is an adjunction between L, and L, then (g,)
will be called a G-adjunction.

If $ and € are G-invariant and (3,5) is a Galois connection between L; and Lo, then
(0,<) will be called a G-invariant Galois connection.

If a, B, and v are G-invariant and (¥, (o, 8)) € MC12(Ag), then (¥, (e, B)) will be
called a G-invariant morphological connection.

If a and B are G-invariant, then we will call the ordered pair (a, 3) G-invariant.
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Let £5, DS, £, and DF denote, respectively, the sets of G-invariant erosions, di-
lations, anti-erosions, and anti-dilations in 0. In the same way, let 0%, O%F, and
O, respectively, denote the G-invariant mappings, the G-invariant increasing map-
pings, and the G-invariant decreasing mappings in Oyy. Our next task is to establish
the sublattice properties of these sets, and for this the following lemma will prove useful.

Lemma 1 Let L, M, and N be complete lattices, let N be a sublattice of M, and let M be
a sublattice of L. If N is, additionally, a complete (meet-complete, join-complete) sublattice
of L, then N is a complete (meet-complete, join-complete) sublattice of M.

Proof From general lattice theory, it follows for all B C N that

inf B<infB <infB <supB <supB <XsupB.
N M L L M N

Our three alternative hypotheses for NV are equivalent to the following:

A. (Complete) infy, B = infy B and sup; B = supy B for all B C N.
B. (Meet-Complete) inf;, B =infy B for all B C N.
C. (Join-Complete) sup; B = supy B for all B C N.

Note that the truth of the lemma for hypotheses (B) and (C) implies its truth for
hypothesis (A). For hypothesis (B), the lemma follows from

inf B < inf B < inf B = inf B.
N M L N
For hypothesis (C), the lemma follows from

sup B =sup B <Xsup B XsupB.
N L M N

Proposition 21 With regard to O, OS5, and 0% we have the following.
1. 0%, 0%, and 0% each contain e and o.

2. 0%, 0%, and (9?2‘ are each complete sublattices of O1s.

Proof For all n € £ and z € £; we have 7,(e(z)) = 7,(e) = e, e(0,(z)) = e, T,(0(z)) =
7,(0) = o0, and o(6,(z)) = o. Thus e,0 € Of; also, it is clear that e and o are each
both increasing and decreasing.

If 1, o € OF, then for all n € £ and = € L£; we have 7,((Y Ap)(z)) = 7, (Y (z) Ap(z)) =
Ta($(2)) A Ty(p(2)) = P (0n()) A 0(0,(2)) = (¥ A ©)(0r(2))

and (¢ V 9)(x)) = 7 (¥ (z) V p(z)) =
Ta($(2)) V T(p(z)) = $(0n(z)) V 0 (6n(z)) = (¥ V 9)(6y(2)).
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Thus ¥ A ¢ and 9 V ¢ are G-invariant and 0% is a sublattice of Oy. If S is a subset
of O%, then for all n € £ and z € £; we have:

ral(5uPoy, S)(®)) = Ty(supg, {(z) : ¥ € 8}) = sup,, {7(¥(2)) : ¢ € S}
= sup,, {6(6,(c)) : ¥ € S} = (supo,, {0 b, : ¥ € S}H)(2).

That is, the supremum of S in Oy is G-invariant. Thus O¢, is a join-complete sublattice
of ;5. The rest of the proof should now be clear.

Corollary 5 Lemma 1, Proposition 1, and Proposition 21 now give the following results.
1. 0% is a complete sublattice of OF.
2. 0% is a complete sublattice of Or,.

3. The infimum in O15 of any collection of (decreasing, increasing) G-invariant mappings
is a (decreasing, increasing) G-invariant mapping.

4. The supremum in Q15 of any collection of (decreasing, increasing) G-invariant map-
pings is a (decreasing, increasing) G-invariant mapping.

Proposition 22 For £5, DS, S, and DS, we have that
1. S, and DS, are meet-complete sublattices of O1a.

2. DE, and S, are join-complete sublattices of O1a.

Proof We note that OF, is a complete sublattice of Oy, and that &1 and D12 are meet-
complete sublattlces of O5. Since €& = &2 N (912 and D¢ o = = D;a N 0%, it is clear
that £ and D are complete lattices that are sublattices of Oj,. Likewise, Di and
&5 are Jom—complete sublattices of Oy, D§, = D12 N OF, and ES = £5N 0%, Again
it is clear that 'D and 5102 are complete lattices that are sublattices of O;s.

(1) Let B C €5 be arbitrary. Then for all n € £ and z € L, we have
7, (info,, B)(z)) = 7, (infz, {e(z) : € € B}) = inf, {7, (e(x)) : € € B} =
inf e, {e(0,(2)) : £ € B} = (infoy, B)(6,(x).

That is, the infimum of B in Oy, is G-invariant. Thus £, is a meet-complete sublattice
of Oq,. ‘The rest of the proof is similar.

Corollary 6 Lemma 1, Proposition 3, and Proposition 22 now give the following results.
1. &G and 75?2 are meet-complete sublattices of £12 and 2512, respectively.

2. DS, and E’g are join-complete sublattices of Dyo and 1o, Tespectively.
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Definition 27 We now adopt the following notation.
1. The set of G-invariant ¥ € Ay will be denbted AS,.
9. The set of G-invariant 1 € My, will be denoted M$,.
3. The set of G-invariant (o, 8) € DDy will be denoted DDS,.

4. The set of G-invariant (a, ) € EEy will be denoted EES,.
The sublattice properties of these sets will now be estabilished.

Proposition 23 To begin with, we have the following.
1. AS, is a meet-complete sublattice of O1z.

2. MS, is a join-complete sublattice of O1a.

]

Proof (1) It is clear that o,e € A$,; moreover, if 9, ¢ € A$,, it is also clear that ¥ V ¢ and
1 A p are both sup-generating and G-invariant. If B is an arbitrary subset of A%, then
infp,, B is sup-generating, by Proposition 6, and G-invariant, by Corollary 4.

(2) It is clear that 0,e € M$; moreover, if ¥, ¢ € M$, it is also clear that 1 V ¢ and
¥ A @ are both inf-generating and G-invariant. If B is an arbitrary subset of M$, then
supe,, B is inf-generating, by Proposition 6, and G-invariant, by Corollary 4.

Corollary 7 Lemma 1, Proposition 6, and Proposition 22 now give the following results.
1. A$, is a meet-complete sublattice of Ais. |
2. MS, is a join-complete sublattice of Mis.

Lemma 2 If {(a,,B,) : v € N} is a subset of O x Oy, then the following hold.

(a) SUPo,, xon (0w, B,) v EN} = (infom{au cv e N}, supp, {6, v E N})

(b) info,, xon{(aw,B,) v EN} = (supozl{a,, :v € N}, info, {8, :v € N})

(c) If o, € DS, (ES) for all v € N, then 50 is supp,, xo, {w : v € N'}.

) If B, € ES (DS,) for all v € N, then s0 is info,, xon{B, : v € N'}.

Let {(aw,B,) : v € N'} be, in addition, a finite set. Then we have the following:

(e) If oo, € DG, (ES) for allv € N, then so is info,, xo, {ow : v € N}

(f) If B, € S (DS)) for allv € N, then so is SUP@,, x0, 10w 1 ¥ € N}
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Proof (a) and (b) are immediate consequences of the last part of Definition 10; (c), (d), (e),
and (f) follow from Corollary 6.

Lemma 3 If {(a,,0,)} is a subset of Aoy, then so are
SUP,; x O {(Ctl,, )61/)} and il’lfom xO2) {(a,,, ,6,,)}

Proof The lemma is trivial if no a, = E. Thus assume that o, = E and 8, = O for
some v € N. Then info, x0,{(o,B,) : v € N} = (E,0) € Ay; whereas for
SUP o, x05, L(w» By) 1 v € N} = (info, {a, : v € N},supp, {6, : v € N}) we may
either omit the 8, = O from supy,, {6, : ¥ € N} and the corresponding ¢, from
info,, {a, : v € N'}, in which case it is clear that supe,, xo,, {(0w, 8,) : ¥ € N} € Agy,
or have that supp,, xo,,{(av, B,) : v € N} = (E,O) € Ay . This completes the proof.

Lemma 4 DD S, 1s a sublattice of (DDgl, <) and 552(’1 is a sublattice of (5521, <).

Proof (DD,;, <) is a complete lattice whose least and greatest elements are (E,O) and
(O, E), which are plalnly G-invariant. According to Lemma 2, if {(a;,5;)} is a finite
subset of either DD, or EES, then so are

(infozl {ai}’ Supe,, {/Bl}) and (Sup021 {Oli}, infozl {51})
The lemma can thus be seen to follow from Lemma 3.
We are now in a position to prove the G-invariant analog of Theorem 1.

Theorem 4 The set of G-invariant morphologzcal connections between Ly and Ly is the
graph of the lattice isomorphism between AS and DD21 given for all ¥ € AG, and for all
(¢,<) € DDS, by o —s (7,/) ) and (5,8) — <S. Moreover, ¥ — (¢, z/)) is a lattice

isomorphism of MES, onto EES, whose inverse is given by (€, €) — €.

Proof Theorem 1 and Theorem 3 show that ¢ —— (-9, -9) is a bijection of AG onto DDE;.
Theorem 1 also shows that if 9, p € A$, then

¥ Apr— infps {(4,9), (0, 79)} and ¥ V v — supyz, {(-4,9), (0, P)}-
Moreover, since 1 A ¢, V ¢ € A$, it follows as well from Theorem 1 that
in Dﬁzl{(ﬁ_b_u : )7 (£7 _E)} and Sup’pﬁzl{('wa _7/}) ( E)}

are elements of DDS,. Since (-¢,¢) and (-, ") are also elements of DD, and since
Df)zcl is a sublattice of (DDx;, <), it follows that

nfps, {(%,9), (,79)} = inf 50 {(-4,¥), (0. 79)}

and

Supyﬁm{( ¥, ) ( )} = SupDDG {( Y, - ) ( PP )}

L
This shows that 1 — ( i %) is a lattice isomorphism of (A%, <,) onto (DD§}, <).
The proof that ¥ — (-, %) is a lattice isomorphism of M, onto £ is similar.
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Corollary 8 The following are now immediate consequences of Corollary 7.
1. DD 51 1s a meet-complete sublattice of (Dﬁgl, <).

2. Sé'g 1s a join-complete sublattice of (5821, <).

Corollary 9 The G-invariant versions of the Achache-Serra propositions are

1. The set of G-invariant Galois connections between L, and Ly is the graph of the lattice
isomorphism between Dg and D given for all 6 € ’D and < € ’D21, respectively, by

5 —s (5and§r—>0§.

2. The set of G- adjunctions between Ly and Ly is the graph of the dual-lattice isomorphism
between £S, and DS, given for alle € £, and s € DS, by € — -€ and ¢ — GE.

The G-invariant version of Proposition 12 is as follows.

Proposition 24 If ¢ € O%,, then we have that
(a) ¥ € AS, if and only if there is an € € £, and a & € DS, such that ¢ = e A J.
(b) ¢ € MS, if and only if there is a 6 € DS, and an & € £S, such that ¢ =5V E.

As a consequence of these results we obtain, in particular, the following results.

(c) If (,5) € DDE, then &= E A OF.
(d) If (,¢€) € EES, then ée = EE V Qe.

Proof (a) If there is an ¢ € £F and a 6 € DS, such that 1 = & A, then by Proposition 12
and the fact that £ A & is G-invariant, we see that ¢ € A%. On the other hand, if
¥ € A%, then by Proposition 12 we see that there is an € 6 512 and a & € Dj, such
that w = £ A0, in fact, if we put ¢ = - and ¢ = 1, then a suitable € is ¢E and a

suitable & is OC. Since < and ¢ are G-invariant, (a) is proved.

(b) If there is a § € D&, and an & € £S such that ¢ = 6 V &, then by Proposition 12
and the fact that § V £ is G-invariant, we see that v € M$,. On the other hand, if
¥ € M$,, then by Proposition 12 we see that there isa § € Dj, and an € € &2 such
that ¢ = 6 V &; in fact, if we put € = ¢- and € = 1)+, then a suitable § is €E and a
suitable £ is Oe. Since € and ¢ are G-invariant, (b) is proved.

(c) If (,%) € DDS,, then by Theorem 4, ¢ € AS,; hence, by (a) and its proof it
therefore follows that < = ¢E A OS.

(d) If (,¢) € EES, then by Theorem 4, ée € MS,; hence, by (b) and its proof it
therefore follows that €€ = €E V Oe.
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3.3 Interim Summary

Thus far I have revisited most of the earlier results for general lattice mappings (those
contained in sections 2.1 through 2.7) and established analogous results for G-invariant
mappings where appropriate. We are at the point in the earlier general development when
the next goal was the establishment of the decomposition theorem, Theorem 2. This goal
was reached via Proposition 13 (which states that Aj» and M, are, respectively, sup- and
inf-generating subsets of O15) and the following result (which was not explicitly stated).

Lemma 5 Ify € O, then we have the following.
1. (5,%) € DDy and [5,3] < -K(9) if and only if T € Arz and T = 9.

2. (€,¢) € EEy and [€,¢] K K- (¢) if and only if €& € My, and ¢ =, €e.
In other words, the conditions in (a) and (b) of Theorem 2 that define the two sets of
mappings that respectively constitute the theorem’s supremum and infimum decompositions,
are respectively equivalent to {\ € Az : A <, ¥} and {u € My : ¥ =, u}, i-e., are just the
sup- and inf-generating representations furnished by A;2 and Mj,. The establishment of the
following G-invariant analog of Lemma 5 is quite straightfoward. The same cannot be said
of Proposition 13, however; indeed, its G-invariant analog turns out to be false.

Lemma 6 Ify € O%, then we have the following.
1. (5,9) € DD, and [5,3) < K(¥) if and only if T € A, and T =, .

2. (¢,€) € EES and [¢,€] < K - (¥) if and only if €& € M, and ¢ =<, Ee.

Proof (1) By Theorem 4, (,<) € DD, is equivalent to A = ¢ € A%, which in turn is
equivalent to -K()) is an interval function; also, (s,$) € DD is equivalent to

[c(¥),5)] = [A(y), Ay)] Vy € Ls.

Now, by definition we have the following:

() :A(y) = inf{z € Ly : y < Mz)} = inf(-K(A)(y)).
(b) “Ay) =sup{z € L1 : y =< Az)} = sup(-K(N)(¥))-

Hence [¢, <] is the interval function -K(X), i.e., [5,¢] = -K(A). Thus [¢,¢] <« -K(¢) can
be written alternatively as -K(A\) < -K(%), which by Proposition 14 is equivalent to
A <, 9. This proves (1). The proof of (2) is similar. «

The obvious G-invariant analog of Proposition 13 is that Af, and M, are, respec-
tively, sup- and inf-generating subsets of Of,. This proposition is not generally
true, however. Indeed, for A%, while there are always enough mappings in Aj2 to sup-
decompose an arbitrary mapping in O;, in some concrete instances—and examples will
be furnished—there are not enough mappings in A§, to sup-decompose an arbi-
trary mapping in Of. In order to obtain the tools needed to get to the root of this
insufficiency, we now take up the development of the kernel theory of G-invariant mappings,
a theory of considerable interest in its own right.
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3.4 Left-Kernel Theory of G-Invariant Mappings
First, I establish some elementary G-invariance properties of left-kernels.
Definition 28 Two further types of G-invariance are the following.
1. F: Ly — P(L;) is G-invariant if 6,(F(y)) = F(7,(y)) for alln € £ and y € L,.
2. F: Oy — P(L1)% is G-invariant if F (1) : Lo — P(L,) is G-invariantV ¢ € O%.

Note that 6,(0) is understood to be @. Thus, if in reference to (1) above we have that F is
G-invariant and F(y) = 0, then F(7,(y)) = 0 for all n € £.

Proposition 25 -K : Of — P(L1)*? is G-invariant.

Proof By definition, 6,(-K(¥)(y)) = {f,(z) : z € L1,y X ¥(z)}. If ¢ is G-invariant, then
y 2Y(z) <= Tn( ) = ¥(0,(x)). Hence,

On (K@) (W) = {09(2) : 7 (y) = (n(2))} = -K (%) (4(1))-

Corollary 10 Ifv € 05, € € £, and -K(¥)(€) = 0, then -K(¥)(n) =0 for alln € £; in fact,
K@) (y) = 0 for ally € L\ {0}

Proof Let u = 7 — & Then 0 = 6,(K(W)(€) = KW)(r-e(€) = -L)7). Since the
function -K(2)(-) is decreasing, it follows that -K(¢)(y) = 0 for all y € [n,e] for all
n € £. Moreover, for all y € £, \ {0}, there is an 7 € £ such that n < y.

Corollary 11 If ¢ € OF, and n € £, then -K(¥)(n) = 6,(-K(¢¥)(p)).
Lemma 7 If¢p € 0%, y € Lo, and -K(¢)(p) # 0, then
K@) () = W,(L@)(p)) :m € &n 2y}

Proof By definition, -K(¢)(y) = {z € L; : sup{n € £: n <X y} = ¥(z)}. Moreover, it is
clear that {z € £L; :sup{n € £:n Sy} I ¢(@)}={zr e Ly :n2¢Y(z) Vn 2 yin {}.
Therefore, -K(4)(y) = N{-K(¥)(n) : n € £,n 2y} = ({0, (-K (¥ )(P)) n€tn=y}

Proposition 26 If ,v € 0%, then we have the following.
1. -K(9)(p) C -K(¢)(p) = -K()(n) C -K(¥)(n) for alln € L.
2. -K(p) < -K(¢) <= -K(p)(p) C-K(¥)(p).

Proof (1) Since 6,(-K(¢)(p)) C 05(-K(¥)(p)), it follows that -K(p)(7y(p)) C -K(4)(79(p))-
Since 7,,(p) = 1, the proof of (1) is complete.
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(2) Denote the set {n € £:n <y} by £(y). If y € L, then
K@) = N 6,(K(@)(p)) and -K@)(y) =[] O,(-K¥)(p))-

n€L(y) nel(y)
Therefore -K(¢)(y) = Nyeey) “K(©) (1) C Nyery) K@) () =

N 6,(K@)(p)) = -K(®)()-

nel(y)
Corollary 12 If p,¢ € OF%, then ¢ =, ¥ <= -K(p)(p) C -K(¥)(p)-
3.4.1 Ronse’s Theorem and Minimal Bases
Next, I introduce several concepts and results from the Heijmans-Ronse-Serra theory.
Definition 29 If a,b € Ly, then for all z € L, we define the mapping o, € O12 by

Cu®) = V{0 € €: 6,(a) <z < 0,(8)).
Remark 13 Ifa A b, then &ab(x) =o forallx € L,.
Lemma 8 o, € OF for all a,b € L.
Proof We show for each u € £ and = € £, that
Tu(oa(z)) = \{n € £: 0,(a) < 8,(z) < 6,(0)} = ou(0u(2)).

First of all, we have 7,(04(z)) = V{€+u: € € £,0¢(a) Xz X 6¢(b)}. Putting{+p=n
we obtain V{€+p: € € £,0¢(a) 2z 2 6:(b)} =

Vi{net: 0, u(a) 22 =X 0,,(0)} = V{n € £:6,(a) 2 () 2 0,(0)},
where 6,_,(a) Xz < 0,_,(b) <= 6,(a) < 0,(z) = 0,(b) validates the last step.
Definition 30 The bi-kernel W(4) of a mapping v € OS, is defined by
W) = {(a,b) € Ly x Ly :a Xz Xb= p 2 ¢P(z)}.
Remark 14 Ify € O%,, then
W(¥) = {(a,b) € L1 x Ly : [a,b] C -K(¢)(p)}-

Consequently, if ¥, € OF and -K(4)(p) = -K(¢)(p), then W(¥) = W(p).
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The next theorem, and its proof, were provided to me by C. Ronse in a private communi-
cation. Its resemblance to part (a) of the Banon-Barrera decomposition theorem (Thm. 2)
should not go unnoticed.

Theorem 5 (Ronse) If v € 0%, then ¥(z) = V{ow(z) : (a,b) € W(¥)} for all z € L.

Proof For each z € L; let ¢(x) be given by p(z) = V{ow(z) : (a,b) € W(¥)}. First we
show that ¢(z) < ¢¥(z) for all z € £;. If n € £ and (a,b) € W(¥), then

6y(a) 2 2 0y(b) => a 26,1 (2) 2b=> p 2Y(0;"(2) = 7, (¥(2)).
Hence n = 7,(p) < ¥(z) and it follows that
ou(z) = \/{n € €: 6,(a) Xz =2 6,(b)} X ().

Thus ¢(z) = V{ow(z) : (a,b) € W(9)} X ¢(x) for all z € L;.
Now we show that ¥(z) < ¢(z) for all z € L. If n € £ and n <X 9(z), then

“Hn) =7 (W(2) = 96, ().

Now if 2/ € £; and 6;'(z ) a' % 6;%(x), then z’ = 6.'(z), which in turn implies

that p < ¢(z'). Hence ( Y(z),0 l(x))n € W(). Since 8,(6;"(z)) =z =2 0,(6,*(x)), it
T 2 0¢(6,(2))} = 0(6_(@))(6-n(2)) (%)- Hence,

follows that n < V{¢ € K A (O 3:)
n =2 V{ow(@) : (a,0) € W(H)} = p(z),

and, since £ is sup-generating, we see that ¥(z) < ¢(z) for all z € £;. Thus ¢ = .

p:

<3

Corollary 13 Applying Remark 14 to Ronse’s theorem we obtain the following.
1. Each ¢ € OF, can be decomposed as ¢ = supog {0as * [a,8] C -K(¥)(p)}-
2. If v, € OF, have the same bi-kernel, then ¢ = 1.

I call the formula

¥ = sup{oa : [a,0] C -K(¥)(p)},

0%,
or its equivalent, a Ronse decomposition of 7). Henceforth we write V(¢) for -K(¢)(p)
and call V() the kernel of .

Remark 15 If o, € 0% and V(p) = V(), then W(p) = W(¥) and hence @ = 1; that
is, a G-invariant mapping is uniquely determined by its kernel, as well as by its bi-kernel.

For more economical forms of Ronse’s decomposition, we introduce the following definition.
(This definition was introduced in an earlier article by Banon and Barrera [11].)

29




Definition 31 If ¢ € 0%, then a set B of closed intervals [a,b] C V(¢) is called a basis
for 9 if every closed interval contained in V(1) is contained in an interval of B; we denote

the set of all bases for v by B(y).

Remark 16 Define B* = {[a,b] : [a,b] C V(¢)}. Then we have the following.
1. If B € B(), then B C B*.
2. B =UB(¥).
3. B* € B(v).

B* is thus the largest basis for ¢; indeed, the Ronse decomposition given by part (1) of
Corollary 13 is precisely ¢ = suppg {ow : [a,b] € B*}.

Remark 17 If ¢y € 0% and B € B(¢), then ¢ = sup{oq : [a,b] € B}; such a formula will
also be called a Ronse decomposition of 1. We distinguish the various Ronse decompositions
by calling sup{ogs : [a,b] € B} the Ronse decomposition of 9 relative to the basis B.

There may also be a smallest or minimal basis for v, i.e., a basis B, such that B is not a
proper subset of B, for all B € B(%). If there is such a basis, then the Ronse decomposition
sup{ow : [a,b] € B,} is minimal in the sense that it is relative to the smallest basis. The
next few results somewhat illucidate the minimal basis question.

Remark 18 IfNB(%) is not empty and is also a member of B(v), then there is a smallest
basis B, for ¥ and B, = NB(y).

For the two lemmas that follow, I will use C to denote subset and C to denote proper subset.
Since (B*,C) is a poset, we can ask whether it has maximal elements, i.e., whether there
exist closed intervals : € B* such that ¢« ¢ j for all y € B*.

Lemma 9 If vy € O% and if every totally ordered subset of (chain in) (B*,C) has an upper
bound in B*, then B, exists and is equal to NB(1).

Proof By Zorn’s lemma, (B*,C) has maximal elements, the full set of which we denote
M. 1t follows that M C N B(%), because the maximal closed-interval subsets of V(1)
clearly must be in every basis for 4. In addition, if [a,b] € B*, then by Hausdorfl’s
maximal principle there is a maximal chain C in B* such that [a,b] € C. Let [a, 8] be
an upper bound of € in B*. Then

[a,8] €C, [a,b] C |, 8], and |, §] is 2 maximal element of B*;

indeed, if there were a 7 € B* such that [a, 3] C 3, then C would not be maximal.
Since it has now been shown that M is a basis for 1, we have at once that M € B(¢)
and M C NB(%y), which clearly implies that M = N B(¢). The lemma is now an
immediate consequence of Remark 18.

30




Definition 32 A C L, is said to be closed under monotone limits if the following hold.

1. {uy} is a net in A such that u, | u=inf{u,} = v € A.
2. {v,} is a net in A such that v, T v =sup{va} = v € A.

Lemma 10 If ¢ € OF, and if the kernel of v is closed under monotone limits, then every
chain in (B*,C) has an upper bound in B*.

Proof Let C be an arbitrary chain in (B*, C). For each j € C, let a, = inf 7 and b, = sup,
so that j = [a,,b,]. It is clear that C C [inf, a,,sup, b,]. Moreover, since V(¢) is closed
under monotone limits, it follows that inf,a; and sup,b, lie in V(¢). We therefore
have that [inf, a,,sup,b,] C V(#), for otherwise there would exist an z € £L; such
that inf,a; < z < sup,b, and = ¢ V(¢); but this would imply the absurdity that
either inf,a, < = < a, or b, < z < sup, b, holds for all y € C. Thus it follows that
[inf, a,, sup, b,] is a closed-interval subset of V(¢) and is therefore an element of B* that
is also an upper bound of C. This completes the proof.

Corollary 14 If ¢ € OF, and if the kernel of ¢ is closed under monotone limits, then B,
exists and is equal to NB(v).

I now introduce several concepts whose development will make it possible to explicitly
determine the maps in A$, £3, and DS, which in turn will lead to an explicit deter-
mination of the maps in DS, and D,.

3.4.2 Kernel Sets

The mapping ¥ — V() of OF into P(L;) turns out to be a lattice isomorphism onto the
collection of sets {V(v) : ¢ € 0%}, where the meet and join operations for subsets of £, are
assumed to be N and U, respectively. This is shown, among other things, in the course of
the development I detail in this section.

There is a many-to-one mapping of the subsets of £, onto O%, that is closely related to
the correspondence between the maps in O and their kernels.

Definition 33 If A C L,, then define the mapping ¥4 € Oy2 by
Yalz) =\{nel:0_,(z) € A}.
Proposition 27 If A C L, then 94 € O% and V(1) D A.

Proof First we show that 7¢(v4(z)) = ¥4(f¢(x)) for all z € £, and all £ € £. We begin
with 7¢(Ya(z)) = V{€ +n:n € £,0_,(z) € A}. Putting £ +n = [, we then get

\/{§ +n:nel,0_,(z) € A} = \/{ﬁ €l:0e_p(x) € A} = Ya(Oc(x)).

Now, V(1 4) = {a € L1 : p X ¥4(a)}, by definition. Moreover, p < ¥4(a) is equivalent
top=V{nel:6_,(a)e A}. Ifbe A, thenpe {nel:6_,(b) € A}, and it follows
that p < ¥ 4(b). Hence V(¢4) D A.
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Thus A — 14 is a mapping of P(L;) into OF.

Definition 34 IfV C L, satisfiesa € V <= p < V{n € £: 6_n(a) € V}, then V will be
called a kernel set. We denote the collection of all kernel sets by K;.

Remark 19 A subset A of L, is a kernel set if and only if
p=X\{net:6_p(a) e A} =>ac A

Proposition 28 IfV C L, is a kernel set, then 0;(V) is a kernel set for all § € £; in fact,
if o is any automorphism of L, that commutes with 6, for all n € £, then a(V) € K.

Proof For each £ € £, it is clear that 6 is an automorphism of £; that commutes with 6,
for all ) € £; hence, it is sufficient to prove the last part of the proposition, namely:
Given that p X V{n € £:0_,(a) € V} = a € V, show that

p=2\{net:6_,(a) € a(V)} = a€a(V).

For this we note that 6_,(a) € a(V) asserts precisely that 6_,(a) = a(b) for some b € V.
Since o is an automorphism, we therefore have 6_,(a) € a(V) <= a 'of_,(a) € V.
By the commutativity assumed, then, 6_,(a) € a(V) <= 60_,(a"'(a)) € V. Thus
p=2V{nert:6_(a) €a(V)} < p=2V{nel:b_,(a(a)) €V}, which implies
that a~1(a) € V and hence that a € a(V).

Lemma 11 Let A C £, and let ¢y € OF,. Then we have the following.
1. V(¢4) = A if and only if A is a kernel set.

2. V(¢) is a kernel set.
Proof (1) Suppose that A € K;. Since V(1) ={a € L1 : p X V{n € £:0_y(a) € A}, and
p=2\{net:6_,(a)c A} =ac A
(since A is a kernel set), we get V(¢4) C A. Hence, V(¢4) = A.
Now suppose that V(14) = A. Then we have that
A={aeLi:p=2\/{net:0_,(a) € A}},
i.e., every a € L, that satisfies p < V{n € £: 0_,(a) € A} must lie in A.

(2) Put V() = A. Since ¢ = Y4 = A = V() = V(a), and since the latter
is equivalent to A = V(v) is a kernel set, it is enough to prove that 1 = 4. For
each £ € L1, we have, on the one hand, that ¥4(z) = V{n € £: 6_,(z) € A} (by
definition), and on the other that ¥(z) = Vijuyca V{n € £ : 6y(a) X z =2 6,(b)} (by
Ronse’s theorem). Now, it is clear that

{nel:0,(a) 2z =<6,(b)} ={nel:a=x0_(z)2b},

so that ¥(z) = V{n € £: 0_,(z) € [a,b] C A}. Moreover, every n € £ that satisfies
0_,(z) € A also satisfies 6_,(z) € [6_n(x),0_,(x)] C A; conversely, every € £ that
satisfies 6_,(z) € [a,b] C A also satisfies 6_,(z) € A. This completes the proof.

32




Corollary 15 We now have the following two results.
1. A 4 maps P(L;) onto OF.
2. ¢ — V(%) is a bijection of OF, onto K.
Proposition 29 K, is a complete lattice relative to N and U.
Proof Let {V,} be any collection of kernel sets. Then for all a we have
p=2\V{net:0_,(a) eVa} =>a€V,

Thus
p=\{net:6_,(a) e[ Va} = a €[ Va

and
p=2\V{net:0_,(a) e YV} = acJVa

Corollary 16 If {V,} is any collection of kernel sets, then

inf{Vo} =(1Va and sup{Va}=JVo

Remark 20 V(o) = @ and V(e) = L,; hence, inf K, = 0 and sup Ky = L;.
Theorem 6 3 — V(2) is a lattice isomorphism of O% onto K.
Proof Let v,¢ € OF. Then for all x € £; we have
W A@)(z)=v(z)Ad(z) and (¥ V¢)(z)=(z)V é(z).
Thus it follows that V(¥ A ¢) = {z € Ly : p < %(z) A p(z)} =
{zeli:p2y@)}n{zely:p2elx)}=V{¥)NV(g).
In the same way, V(Y V ¢) = {z € L1: p Z¢(z) V ¢(z)} =
{zelip=d@)}u{zeli:p=9(z)} =V([H)UV()
Definition 35 If A C £,, then
Al={Vek,: AcCV)
defines the kernel closure of A.

Remark 21 Since the intersection of any collection of kernel sets is a kernel set, it follows
that A|| is the smallest kernel set containing A.
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Proposition 30 If A C Ly, then V(¢4) = A|.

Proof Since ¢4 € OF, even when A is not a kernel set, it follows that there is a unique
V € K, such that V(i 4) = V. This proposition asserts that V' is Al|. Since the kernel
of 94 contains A, it is clear that V D A||. On the other hand, since A C A}, it follows
from the definition of 14 that ¢4 < 1)4). Because 9 — V(%) is a lattice isomorphism,
it finally follows that V = V(¢4) C V(¢¥4)) = ‘Al|. This completes the proof.

Corollary 17 The relation ~ defined in P(L;) by A~ B <= A| = B|| is an equivalence
relation that consequently partitions P(L;). There is thus a bijection ¢ — Ay of oA onto
the set of ~-equivalence classes such that A € Ay <= 14 = . Hence, for each ¢ € o5,

follows that JAy, =V(¢) and NAy = A, is the least element of P(L,) such that vz, = ¢

We are now in a position to explicitly determine the maps in AS, 812, and D . This
will in turn lead to an explicit determination of the maps in Dg and chl ’

3.4.3 Sup-Generating G-Invariant Mappings

Lemma 12 If [a,b] is a closed interval of Ly, then N{0y([a,b]) : n € £(y)} is either empty
or a closed interval for all y € Lo; recall that (y) = {n € £:n X y}.

Proof Since it is clear that 6,([a, b]) is a closed interval of £; for all n € £, we will prove that
any intersection of closed intervals is either empty or a closed interval. Let {[ag.bg]} be
an arbitrary collection of closed intervals of £y. If Nglag, bg] = B, we have nothing to
prove. If Nglag, bs] = A # 0, then let z be an element of A. Thus ag <X z =< by for all
B and we see that supgag < z =< infgbg. Hence A C [supg ag, infsbs]. Now suppose
that z is an element of £, that satisfies supgag < = < infgbs. Then ag =< z =< bg for
all B and we see that z € A, which inturn implies that A D [supg ag, infg bg).

Lemma 13 Ifa,b € L,, then we have the following.
1. If ¢y € OF and V(¥) = [a,b], then ¢ = ga.
2. V(ow) = [a,b]]].
Proof (1) By the corollary to Ronse’s theorem (Cor. 13),

P = Squ{Ucd : [e,d] C [a,b]}.

012

If [c,d] C [a,b], then for all x € £;, we have
oca(x) = sup{n € £: 0_,(z) € [c,d]} X sup{n € £: 0_,(z) € [a,b]} = gas().

Thus 0.4 =, O, and it follows that ¥ = og.
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(2) First we note that 9, 4)(2) = 04s(z) for all z € L;; indeed, by definition we have

Yap(z) = \{n€l:a=0_,(z) b},

and, since
a=0_,(z) 2b <= 0,(a) 2z =20,(b),

we also have
Vinet:az0_,(z) b} =\/{nel:0,(a) 2z = 0,,(b)} = 0g(T).
This shows that V(o) = [a, b]]|.

Theorem 7 A, = {04 : [a,b] € K1}

Proof If ¢ € A§, and ¢ # o, then -K(¢)(p) = [a,b] for some closed interval [a,b]. Hence
[a,b] = V(¥), is therefore a kernel set, and ¥ = o, by the last lemma. If ¢ = o, then
choose any a,b € £; such that a £ b.

On the other hand, suppose that [a, b] € K;. We complete the proof by showing that g,
is sup-generating. Since V(oa) = [a,b]|| and [a, b] € K;, it follows that V(o4) = [a, b].
If [a,b] # 0, then for all y € L, we have

K(oaw)(y) = (bn([a,b]) : n € £(y)},

which is either empty or a closed interval. If [a,b] = 0, then -K(04)(y) = 0 for all
y € Ly. Thus we have proved that o, is sup-generating.

‘We now compare, in light of this theorem, the Ronse decomposition of a G-invariant
map, 1, with what would be the G-invariant analog of (a) of Theorem 2; that is,
we compare suPog {0as : [a,b] C V(¥)} with suppg {0as : [a,b] € Ky, 00 Zp 9}

Theorem 8 If all closed intervals of Ly are kernel sets, then suppg {0 : [a,0] C V(¥)} =
SUPeg, {oa : [a,b] € K1,0a =p ¥}. If not all closed intervals of L1 are kernel sets, then it
can happen that there are o, that are not sup-generating, which are therefore not present in
the formula suppg {oa : [a,b] € K1, 0u =p 9}, but which are nonetheless still needed for the
Ronse decomposition.

Proof For the first part, rewrite the Ronse decomposition as supog {0as : V(0a) C V(¥)} =
Supog, {0 : 0a =<, ¥}, which equals Supog, {ow : [a,b] € Ki,00 =, 9}, since all
[a,b] € K;. Section 4.1 provides the example that proves the second part.

In situations where a smallest basis B, for ¢ exists, we of course have the most economical
Ronse decomposition suppg {das : [a,8] € B,}. But even in this case it is not clear that
the maximal closed intervals of B, are necessarily kernel sets.

35




3.4.4 G-Invariant Erosions and Anti-Dilations

Lemma 14 Ife € £ and & € D, then we have the following.
1. V(e) = [a, E] for some a € L;.
2. V() = |0, b] for some b € L;.

Proof (1) By definition, V() = {z € L, : p < &(z)}. Since &(inf B) = inf{e(z) : € B} for
all B C Ly, it follows in particular that e(inf V(e)) = inf{e(z) : z € V(e)}. Thus we
see that p < inf{e(x) : z € V(e)} = e(inf V(¢)), i.e., inf V(e) € V(e). Let a = inf V(e).
It follows that every = € V(g) satisfies a < z. Furthermore, if x is any element of £,
such that a < z, then, since erosions are increasing, it follows that p < €(a) < &(z).
Hence, we have shown that V(e) = [a, E].

(2) By definition, V(8) = {z € £, : p =X 6(z)}. Since 5(sup B) = 1nf{6( ): z € B}, for
all B C L,, it follows in particular that 5(sup V(5)) = 1nf{(5(w) z € V(6)}. Thus we see
that p < inf{é(z) : z € V(s 8)} = 6(sup V(9)), i.e. ,sup V(8) € V(3). Let b=supV(d). It
follows that every z € V(4) satisfies z < b. Furthermore if z is any element of £; such
that z < b, then, since anti-dilations are decreasing, it follows that p < 6(b) < &(z).
Hence we have shown that V(§) = [0, b].

Definition 36 For each a € L, define the mappings ¢, = 0, and ga = 00a-
Lemma 15 Let a,b € £,. Then e, € 0%, 8, € OS5, and we also have the following.
1. g,(z) =sup{n € £:6,(a) Xz} forallz € L.
2. b,(z) =sup{n € £: z = 0,(a)} for allz € L;.
8. If [a, E] € K1, then €, is a G-invariant erosion whose kernel is [a, E].
4. If|0,b] € Ky, then & is a G-invariant anti-dilation whose kernel is [O,b].

Proof (3) It is clear that €, = 9,5 is G-invariant and that V(e,) = [a, E]. We must
show for any B C L; that g,(inf B) = inf ¢,(B). Since ¢, is increasing, it is clear that
g.(inf B) < infe,(B). Since [a, E] € K4, it follows that o,g = €, is sup-generating, i.e.,

go(inf B) A €,(sup B) = inf £,(B).

Hence, inf e,(B) =< g,(inf B).
(4) It is clear that & = o4 is G-invariant and that V(6,) = [0,b]. We must show

for any B C £, that S(sup B) = inf & (B). Since 8y is decreasing, it is clear that
Ss(sup B) < inf §,(B). Since [0, b] € Ky, it follows that ooy = 0, is sup-generating, i.e.,

S (inf B) A 8,(sup B) = inf §,(B). -
Hence, inf 6,(B) < &,(sup B).
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Theorem 9 Denote the sets {a € L : [a,E] € K1} and {b € L, : [0,}] € K1} by [Ky, E]
and [0, K], respectively. Then we have the following.

1. &G ={e,: a € [Ky, E]}.

DS, = {8, : b € [0,K:]}.

[K1, E] is a join-complete sublattice of L;.

[0, K1) is a meet-complete sublattice of L.

a — [a, E] is a dual-lattice isomorphism of [Ky, E] onto ({[a, E] ‘a€ (K1, E]},N,U).
b [0,b] is a lattice isomorphism of [0, K1) onto ({[O,b] : b € [0, K]}, N, U).

€ — a is a dual-lattice isomorphism of £ onto [Ky, E).

o RS A e e

& — b is a lattice isomorphism of DS, onto [0, K,].
Proof (1) and (2) are immediate consequences of the last two lemmas. The identities (A)
and (B) below show that [K;, E] and [O, K] are sublattices of L;.

(A) [ay, E]NJag, E] = [a1 V ag, E] and [a1, E] U [as, E] = [a1 A ag, E] for all a1,a; € £;
(B) [O, bl] N [O, bg] = [O, b1 AN bz] and [O, b1] U [O, bg] = [O, b1 \% b2] for all bl, b2 S [,1

These identities also furnish easy proofs of (5), (6), (7), and (8). Since O € [Ky, E]
and since A C [K;, E] = sup A € [Ky, E], it follows that [K;, E] is a join-complete
sublattice of £;. Likewise, since E € [0, K;] and since

B C [0,K;] = inf B € [0, K,4],
it follows that [0, K] is a meet-complete sublattice of L;.
Definition 37 For each a € [Ky, E] and b € [0, K,] define the maps ¢, and , as follows.
1. <, is the unique dilation in DF, such that (€,,s,) is a G-adjunction.
2. & is the unique anti-dilation in 15201 such that (gb, &%) is a G-invariant Galots connection.
Remark 22 With regard to ¢, and G, we have the following.
1. €, — <, 5 a dual-lattice isomorphism of ES onto D,.
2. & — & is a lattice isomorphism of DS onto D,.
3. ¢, +— a is a lattice isomorphism of DS, onto [Ky, E].

4. &+ b is a lattice isomorphism of DS, onto [0, K,].
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Lemma 16 Ifa € [K1, E] and b € L;, then we have that
1. [a,b]|| C [a, E} N[O, b]|| (equivalently, ooy =<p €a A 5).
2. Ifb € [0,K1], then [a,b] is a kernel set and qp = €, A 8.

Proof (1) Since [a, E] and [0, b]|| are kernel sets, it follows that [a, E] N [O,b]]| is a kernel
set; moreover, [a,b] = [a, E]N[0,b] C [a, E] N[O, b]|.
(2) Since [a, E] and [O, b] are now kernel sets, it follows that [a, E] N [0, b] = [a,b] is a
kernel set, and hence that o,, = €, A 9.

The next result is a corollary of Ronse’s theorem.

Corollary 18 Ify € O%" and ¢ € OF%, then we have that
1. (z) = V{ea(z) : a € V(@)} for all z € L;.
2. ¢(z) = V{0(z) : b€ V(¢)} for allx € L;.
Proof (1) We apply the Ronse decomposition,
P(z) = V{ow(@) : (a,b) € W(¥)},

to the case where 7 is increasing. In this case we have a € V(¢) = (a, E) € W(¥).
Indeed, since a € V(¢) <= p <X 9¥(a), and 9 is increasing, it is clear that

a=17 X E=p=X1v(a) 9.

Moreover, if (a,b) € ( ¥) and x € Ly, then 6,(a) X = < 6,(b) = 6,(a) <Xz, and so
we have that o,(z) = 0,5(x) = €,(z). Therefore

z) = V{oar(z) : a € V(¥)} = \{ea(z) : a € V(¥)}.

(2) A proof much like that of (1).

We should finally note that the theory developed so far has nothing to say about the
constitutions of £S and DS, nor does it tell us anything about the constitutions of M$, S,
and £$. To obtain such information, a theory of MY, that parallels what I have done
for AS, would have to be developed. Such a theory Would have to be based on an
inf-generating set £ rather than a sup-generating one, and would entail developing a
theory of right kernels analogous to the left-kernel theory developed here. The result of
all this would be a theory of MY, that gives us explicit determinations of the maps in M12>
DS, and £S, just as the parallel theory of A$, has given us the constitutions of A%, £5,
and D . Having the constitution of M%,, moreover, we could then simply employ the lattice
1somorphlsm p— (p-, 7) to generate the p- € ES and T € £, from the u € M$
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3.4.5 G-Invariant Lattice Operators

The theory of sections 3.4.3 and 3.4.4 of course specializes to the case of G-invariant lattice
operators, i.e., the case where £, = £, = £ and O3 = Oy = O(L) = O. This case has
certain distinctive features that we will here elaborate. First we adopt the following no-
tations: &g, D¢, &g, and D denote, respectively, the sets of G-invariant erosions, dilations,
anti-erosions, and anti-dilations on £; Og, Of%, and Og respectively denote the G-invariant
operators, G-invariant increasing operators, and G-invariant decreasing operators; finally,
we let K = K(L) denote the collection of all kernel sets.

Proposition 31 Og, Of, Og, &, De, &z, and Dg each contain the identity operator,
id : z — x, and are each closed under composition.

For each z € £ and £ € ¢ we introduce the handy notation, z; = 7¢(z), of Heijmans
“and Ronse. The lemma below gives an alternative expression for the operator ¢, that closely
resembles the well-known definition of the erosion of a given set x by another set a.

Lemma 17 ¢,(z) = N{z_¢ : £ € £(a)} for alla,z € L.

Proof For all a,z € £ we show that V{n € £ : 7,(a) X 2} = A{z_¢ : £ € £(a)}. First we
show that 7,(a) < z = n 2 z_ V § € £ such that { < a. To see this, note that
if £ € £, then 7,(a) < z implies that 7_¢7,(a) X 7_¢(), so that 7,_¢(a) = T_¢(z). If
€ X a, then p = 7_¢(§) <X 7—¢(a). Therefore, n = 7,,(p) X Typ—¢(a) X 7_¢(x) = v_¢. This
proves the desired result, which in turn leads to the conclusion that

Vinet:r(a) 2z} < /\{x_g 1€ € l(a)}.

To complete the proof we establish the reverse relation. For this, let us first notice that
N{z_¢ : € € £(a)} is the supremum of the lower bounds of {z_¢ : £ € £(a)}) that lie in
¢ (because ¢ is sup-generating). Accordingly, let ¢ € ¢ satisfy ( < z_¢ for all £ € £(a).
Then & = £+ ( = (¢ <X 7e(z—¢) = z. Since a¢ = V{& : £ € {(a)}, it therefore follows
that a; < z; hence, ( < V{n € £: 1,(a) <X z}, and we see that

Nz—c: € € ()} 2 \/{n € £:7y(a) < 7).

Proposition 32 The following four statements are equivalent and true for all a € L.
1. [a,€] is the kernel of ,.
2. [a,e] € K(L).
3. €, 18 a G-invariant erosion.

4. €4 has a lower adjoint ¢, i.e., (€q4,S,) @8 an adjunction.
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Proof We prove (1). If a € £, then V(e,) = {z € L : p = &,(x)}. Moreover, p X £,(2) is
equivalent to p < A{z_¢ : £ € £(a)}, which implies that p <X 7_¢(x) for all £ € £(a).
Thus 7¢(p) =< 7,(z) for all £ € £(a), which is the same as £ < z for all £ € £ such that
€ < a. Hence a = sup{¢ € £: £ =< a} < z, and this shows that V(e,) C [a,€].

We complete the proof by showing that a X z = p <X €,(z). Now, supf(a) = a =X z;
hence, £ < z for all £ € £ such that £ < a, which is the same as 7¢(p) < 7,(z) for all
€ € £(a). Thus p < 7_¢() for all £ € £(a), and it therefore follows that

p = Moo : € € ba)) = cua).
From this result we obtain the following largely obvious corollary.

Corollary 19 For all a,z € L and £ € £, we have the following.

1. €, € &g, sa € Dg, and (g,4,,) is a G-adjunction.

2. cule) = Vo : € € €a)}.

3. ¢ =1T¢ and g = T_¢.
Proof We will prove only (2). For this we show that

MueL:z=2e,(u)} =V{ze: £ €4(a)} forall a,z € L.
We have A{fu € Lz <e,(u)} =A{ueL:z X AN{u¢: £ €4(a)}} =
MueLl:z3uVéela)}=NMueLl:ze2uVEela)} =1

Since % is the infimum of all the‘upper bounds u of the set {z¢ : £ € £(a)}, it is clear
that @ is simply the supremum V{z¢ : £ € £(a)} of that set. This completes the proof.

Note that the alternative expression in (2) above for the dilation operator ¢, closely resembles
the well-known definition of the dilation of a given set x by a structuring element a, and in
this regard is the natural companion of €,(z) = A{z_¢ : £ € £(a)}. It should also be noted
that the isomorphisms given in Theorem 9 (6) and Remark 22 (3) are in fact onto £ in the
lattice operator case. In other words, we have that (1) a — ¢, is a dual-lattice isomorphism
of £ onto & and (2) a — ¢, is a lattice isomorphism of £ onto Dg. Thus a —— ¢, preserves
infima and suprema and a — ¢, reverses infima and suprema. The next remark spells this
out in more detail.

Remark 23 If A C L, then we have the following.
1 Gupa =sup{s, : a € A} and Gnr 4 = inf{c, : @ € A}.

2. equpa =1nf{es : @ € A} and gins 4 = sup{e, : @ € A}.
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Remark 24 If A C L, z € L, and there exists an 1 € £ such that p X 1 and 7_,(z) € A,
then z € A|| = V(¢); this is because A C Al and

€Al = pX\{netl: m,(z) € All}.
What can be said about this remark’s converse? Indeed,
g€ A= pV{§ €l:m(z) € A},

and we therefore have z € A|| = p € {€ € £ : 7_¢(z) € A||}. But does x € A| imply the
existence of an n € £ such that 7_,(z) € A and p X ? If z € A, then clearly yes. Since
z € A|| implies that .4(z) # o (because o < p), and since

Ya(z) =0 = {nel:7,(z) € A} =0,

we see that z € A|| = {n € £: 7_,(z) € A} # 0. Thus, if z € A|| \ A, then can it happen
that p £ 7 for all members of the nonempty set {n € £: 7_,(z) € A}? The answer here is
yes. Indeed, there are important examples in section 4 of the abstraction we are considering
for which no two distinct elements of £ are <-comparable. In this case, it therefore follows
that p < n for an n € £ if and only if n = p, i.e., if and only if x € A. Let us here repeat
Lemma 16 adjusted for the case at hand.

Lemma 18 We have the following for all a,b € L.
1. [a,b]|| € [a, €] N [o,b]]| (equivalently, ooy =, €0 A 8).
2. If [0,b] is a kernel set, then [a,b] is a kernel set and oap = €4 A 8.

We will presently see, in Example 1 (sect. 4.1), a morphologically important complete lattice
for which [o, b] is not generally a kernel set but o4, = €, A8 holds for all a and b (cf. Thm. 8).
We will see an equally important lattice in Example 2 (sect. 4.2), for which [o, b] is a kernel
set for all b; and, finally, in Example 3 (sect. 4.3), we will detail a case of Lemma 16, in
which every b belongs to [0, K,].
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4 Examples

4.1 Example 1: £ = ERV(R")

Let ERV(R") denote the set of extended real valued (ERV) functions defined on the n-fold
cartesian product of the real continuum R, where n is a positive integer.

Definition 38 If f,g € ERV(R"), then define
f=g < f(z) <g(z) for all z € R".
Proposition 33 (ERV(R"), <) is a complete poset.

Proof It is clear that (ERV(R"), <) is a poset. If {f,} is any subset of ERV(®"), then the
supremum V,, f, and infimum A, f, of {fs} are given respectively by the pointwise
supremum and infimum; i.e., for each z € R™ we have

(Y fa> (2) = sup fa(z) and </a\ fa) (2) = inf fa(2).

This is clear because sup, f.(z) (z € R") is an ERV function on R" that is plainly the
least upper bound of {f,}; and likewise for inf, f,(x).

Corollary 20 The lattice operations in (ERV(R"), =) are the pointwise supremum and in-
fimum; that is, if f,g € ERV(R™) and x € R", then (f V g)(z) = max{f(z),g(z)} and

(f A g)(z) = min{f(2), g(z)}
Definition 39 For each z € R" and t € R, define 7,4, w,, € ERV(R™) b

—oo if T oo if T
rat) ={ 70 RVZE wma = { 7 HVET

Denote the sets {n,;: r € R*,t € R} and {w,; : x € R",t € R} by X and N, respectively.
Proposition 34 X (N) is a sup-generating (inf-generating) subset of ERV(R™).

Proof If f € ERV(R™), then it is clear that sup{n € X : 7 = f} X f. For each z € R" such
that f(z) is not infinite, moreover, we have 1, sy € X, Nz 5x) = f, and 0z 5y () =
f(z). If f(z) = oo, let {¢;} be an increasing sequence of reals tending to oo, and note
that {n,:,} C X. Clearly, then, f =sup{n € X : n < f}. The rest is similar.

Remark 25 n,, is <-comparable with n,, <= = =1y.

Definition 40 For each z € R, t € R, and f € ERV(R"), let f + (z,t) € ERV(R") be
defined for ally € R™ by (f + (z,t))(y) = fly —z) + ¢.
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Definition 41 Let R, denote the commutative group (R™*1,+), where + denotes vector
addition in R**1, and denote the elements of R,y by (z,t) where x € R" and t € R. For
each (z,t) € Roy1 and f € ERV(R™), let s, - f — [+ (z,t) and define the mapping
s: Ry X ERV(R®) — ERV(R") by s((z,t), f) = sz4(f) = [+ (z,1).

Proposition 35 (R,.1,s) is an effective group action on ERV(R") and s, is a lattice
automorphism of ERV(R™) for each (z,t) € Ry11. Moreover, (Rny1,8) s X-admissable.

Proof (R,.1,s) is a group action on ERV(R™) because (z,t) — s, has the homomorphism
property (z,t) + (§,7) — S(t)+(e.r) = Se;r © Sz, as is easily verified. The action is
effective because distinct (z,t) give rise to distinct s;;, i.e., the homomorphism is
bijective and therefore an isomorphism. If (z,t) € R,4; and f,g € ERV(R"), then one
easily verifies that

Sz2(F AN G) = $24(f) ANszp(g) and sz4(fV g) = 524(f) V 824(9),

ie., each s, is a lattice automorphism of ERV(®™). For the X-admissability of the
action, let 7, € X and note that s;4(7e,) = 7er + (2,t) = Ntz r4t € X'; moreover,
given 1,4, My, € X one readily sees that sy ,_+(7z:) = 1y This completes the proof.

Remark 26 A mapping 1 : ERV(R") — ERV(R") is (Rp11, 8)-invariant (or more briefly
R...1-invariant) if and only if Y(f+(x,t)) = ¥(f)+(z,t) V f € ERV(R") and (z,t) € Rp41.

Definition 42 To define the kernels of R, 11-invariant operators on ERV(R™), we choose
Moo as the reference element of X.

Accordingly, if ¢ is an R, -invariant operator on ERV(R"), then V(¢) is given by
V() = {f € ERV(R") : mo0 X ¥(/)}-

Since —o00 = ngo(x) < Y(f)(z) for all z # 0, it follows that
V() = {f € ERV(R") : 0 < ¥(£)(0)}.

Definition 43 A subset V of ERV(R™) will be called a k-set if
fEV <= f+(0,t) €V forallt > 0.

Proposition 36 If 1 is an R,41-invariant operator on ERV(R™), then V() is a k-set.

Proof If f € V(¢), then 0 < ¢(f)(0). If ¢ > 0, then ¥(f + (0,t))(0) = ¥(f)(0) +t > 0, by
the R, -invariance of ¢. Hence we have shown that

feV@) = f+(0,t) e V(¥) for all t > 0.
If, on the other hand, f + (0,t) € V(¢) for all ¢ > 0, then
0 < 9(f +(0,t))(0) = ¥(f)(0) + ¢t for all ¢ > 0.
Clearly, then, ¥(f)(0) > 0, and it follows that f € V(¥).
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Proposition 37 If1 is an R, 1-invariant operator on ERV(R™) with kernel V(1), then for
all f € ERV(R™) and x € R" it follows that

P(f)(z) =sup{t: f - (z,t) € V(¥)}.
Proof For all f € ERV(R"), it follows from general considerations that
P(f) = V{mys : (1,t) € Ry, [ — (,1) € V®)}-
For each z € R" we therefore get the desired result
(f)(z) =sup{t: f - (z,¢) € V(¥)}.
Proposition 38 If V C ERV(R"), then the operator ¢ defined for all f € ERV(R®) by
P(f)(z) =sup{t: f - (z,t) €V} (z€R")
is Rys1-invariant; moreover, if V is a k-set, then V() = V.
Proof To verify R, ;-invariance we evaluate
(f + (y,r))(x) =sup{t: f+ (y—=z,m—1t) €V}
and compare the result with |
W)+ (g, m)(@) = ¥(f)(z —y) +r=sup{r +7: f+ (y —z,—7) € V}.
Setting 7 4+ 7 = ¢ this becomes
W(f) + () () = ¢(f)(z —y) +r=sup{t: f+ (y—z,7—1) €V}

Thus 7 is R, ;-invariant independently of the k-set character of V.

For the second part, we begin with
V() = {g € ERV(R") : 0 < sup{r: g — (0,r) € V}}.

Since it is clear that g € ¥V = sup{r : g — (0,7) € V} > 0, we see that V C V(¢),
again independently of the k-set character of V. Suppose finally that h € V(9), so
that 0 < sup{r : h— (0,7) € V}, i.e,, h — (0,7;) € V for all r; of a real sequence {r;}
such that r; T 0. If h ¢ V, then there is a t > 0 such that h — (0, —t) ¢ V, because V
is a k-set. But for i sufficiently large it follows that h — (0,7;) € V and —t < r; < 0.
Thus there is an 7 such that r; + ¢ > 0 and therefore, again by the k-set character of
V, h+ (0,t) € V. This contradiction completes the proof.

Corollary 21 A subset V of ERV(R") is a kernel set if and only if V is a k-set.
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Definition 44 If f € ERV(R™) and V C ERV(R"), then we define the following.
1. S(f)y={z e R": f(z) > —o0}.
2. f1={f+(0,t): t > 0}.
3. fl={f+(0,t):t <0}
L I1={+00) teR),
5. BW)={inf(f I NV): f eV}
Remark 27 {f ]: f € ERV(R")} is a partition of ERV(R").
Lemma 19 If h € ERV(R") and A is a nonempty subset of h ], then the following hold.
1. There is a unique nonempty subset A of R such that A= {h+ (0,7r):1 € A}.

2. If A is bounded from below and g = inf A, then there is a sequence {t;} of positive reals
such that t; | 0 and g + (0,¢;) € A for all i.

Proof (1) Each element of A is of the form A + (0,7) for a unique real r, i.e., there is a
unique nonempty subset A of R such that A = {h + (0,7) : r € A}.

(2) For all z € R" we have that g(z) = (inf A)(z) = inf{h(z) +r : r € A}. Since
A is bounded from below, it follows that g(z) = h(z) + inf A for all z € &"; hence,
g = h+ (0,inf A). There is a sequence {r;} in A such that r; | inf A. Thus if we let
t; = r; — inf A, then {¢;} is a sequence of positive reals such that ¢; | 0, and for all ¢

g+(0,t)=h+(0,t; +inf A) = h+ (0,r;) € A.

Definition 45 If A C R", then define X4 € ERV(R™) by

_J oo ifyeA
NA(y)”‘{ —oo ify¢ A"

IfX € ERV(R"™) satisfies X = Ry for some A C R", then R will be called an aleph function.

Lemma 20 If N is an aleph function, then we have the following.
1. R [={R}.
2. eV = ReB(V).
3. ReB(V) = 3 heV such that {z : h(z) = oo} = {z : R(z) = o0}.
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Proof (1) and (2) are trivial. (3) If & € B(V), then, by definition, there is an h € V such that
inf(h T NV) = X. Since h | NV # 0, there is a unique nonempty subset A of R such that
h 10V ={h+(0,r): r € A}. If Ais not bounded from below, then there is a sequence
{r;} in A such that r; | —oo, and this implies that {z : h(z) = oo} = {z : R(z) = oo}
Hence in this case, h fulfills the conditions in (3). If A is bounded from below, then
by Lemma 19 there is a positive sequence t; | 0 such that R + (0,¢;) € h [ NV for all
i; but this implies that ® € V. Hence in this case, X itself fulfills the conditions in (3).

Lemma 21 IfV ¢ ERV(R"), g € B(V), and g is not an aleph function, then g € V||.

Proof Let g € B(V). Then there is an h € V such that g = inf(h [ NV). It is clear that
h ] NV # 0. Moreover, if the nonempty set A C R such that

RINV={h+(0,r): 7€ A}

were not bounded from below, then we would have g(z) = —oo when h(z) # oo and
g(z) = h(z) when h(z) = oo, i.e., g would be an aleph function. We may therefore
assume that A is bounded from below. There is thus a sequence {t;} of positive reals
such that ¢; | 0 and g + (0,¢;) € V for all i. Therefore, g + (0,t) € V|| for all ¢ > 0,
and this implies the desired conclusion that g € V||.

Definition 46 For each V C ERV(R"), let B_x(V) denote B(V) with its aleph functions
removed; also, let Vx denote the set of aleph functions in V. Then we define B(V) by

B(V) = B_x(V) UV C B(V).
Proposition 39 If V C ERV(R"), then the following hold.
1. V = UfGB(V) f I ﬂV
2. V|l =Uscgo{f +(0,%) : t 2 0}.
Proof (1) It is clear that V = U{f ] NV : f € ERV(R")}. Moreover, if f [ NV # @, then
there is a g € V such that g = f ]. Therefore, h = inf(f [ NV) e B(V)and h [= f {.
(2) Put Vi = Upegy{f +(0,8) - ¢ 2 0}. Since f [ NV C {f + (0,t) : t > 0} for all
f € B(V), it follows that V C V;. If g € V;, then there is an f € B(V)andart >0
such that g = f + (0,7); hence g + (0,) = f + (0,7 + ) € V; for all £ > 0. On
the other hand, if g + (0,t) € V; for all ¢ > 0, then there is an f € B(V) such that
{g+(0,t) : t >0} C {f+(0,7) : r > 0}. Thus it follows that g = f + (0,7') for

some 7’ > 0; hence g € V; and we see that V; is a kernel set that contains V. Thus it
remains to prove that V' is a kernel set and contains V = V; C V'

If g € V;, then there is an f € B(V) such that g = f + (0,t) for some ¢ > 0. We
consider the two cases (a) t > 0 and (b) t = 0 separately. (a) Since f € B(V), there
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is an h € V such that f = inf(h [ NV). Thus h = f + (0,7’) for some ' > 0. In
fact we can choose h so that 0 < r’ < t, i.e., so that h < g. Since V' is a kernel set
containing V, it follows that A+ (0,7) = f+(0,7" +r) € V' for all r > 0. Consequently,
h+(0,r) =g+ (0,(r'—t)+7r) €V for all r > 0. Since 7' —t < 0, it is clear in this
case that g € V' (choose r =t —7'). (b) If t = 0, then f = g and we see that g € B(V).
If g is not an aleph function, then g € V||, by Lemma 21. Since V' D V||, it therefore
follows that g € V'. On the other hand. if g is an aleph function, then we must have
that g € V C V|| ¢ V'. This completes the proof.

Proposition 40 If [g,h] C ERV(R"), then the following hold.
1. If[g,h] # 0, then [g,h] is a kernel set if and only if h =Ry for some A C R".

2. g, bl ={f 1: f € lg,hl} C [g, Rsw)-
3. If h is not an aleph function, then the containment [g, h]|| C [g, Rg(n)] is proper.

Proof (1) If [g, h] is a kernel set, then it follows that h(z) +t < h(z) for all z € R and all
t > 0; hence it is clear that h is an aleph function. On the other hand, if [g, h] # 0,
h = R4 for some A C R", and f € [g, h], then it is clear that f + (0,t) € [g,h] for
all t > 0. To see that f + (0,t) € [g,h] for all t > 0 = f € [g,h], first note that
f € ERV(R") and f+(0,t) € [g, h] for all t > 0 clearly imply that f < hand f = —o0
on A°. Moreover, if there were an z € A such that f(z) < g(z), then there would be
a t > 0 such that f(z) +t < g(z), i.e., at > 0 such that g A f + (0,¢).

(2) If h is an aleph function, then [g, k||| = [g, 4] for some A C R" and it is clear that
[g,84] = {f 1: f € [9,R4]. Assume, then, that h is not an aleph function. First we
determine B([g, h]). For each f € [g, h] we define

7 =sup{r:9 <X f—(0,7)}

and note that (inf(f [ N[g, h]))(z) = inf{f(z) +t: f +(0,t) € [g, h]} for each z € N".
Thus if 74 < oo, then inf(f | N[g,h}) = f — (0,77) € [g,h], and it follows that
{f1:f€lg,h] and 74 < 00} C [g,h]||. If 75 = o0, then g = f — (0, 7) for all positive
7 and for each each z € R™ we have

inf(f 1 Nlg, W) (x) = inf{f(&) — 7 g < f — (0,7)}.

If f(z) ¢ R, then inf(f ] N[g,h])(z) = f(z); otherwise, inf(f ] N[g,h])(z) = —o0.
Thus inf(f | N[g, h]) = Riz:f(z)=cc}- Define A, B,C C R" by A = {z : h(z) = —oo},
B = {z : h(z) € R}, and C = {z : h(z) = oo}. Since f = h, it follows that
{z : f(z) = oo} C C and hence that Ry;.f(s)=0c} <X h. Furthermore, it is clear that
9(z) = Ryzp(z)=c0} for all z € A. Since h is not an aleph function (ie., B # 0), it
follows that ¢ < RNyz.f)=c} < 9(z) = —o0 for all z € B. Thus if g(x) > —oo for
some x € B, then it follows by Proposition 39 that

l9: Ml ={f 1: f €lg,h], 7 <o} U{f I: f €g,h], 75 = oo}
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This conclusion is not changed if g = —o0 on B; indeed,
{Riz:f@)=oc} : [ € [9,R], 75 = 00} C [g, 4]

in this case, and s0 {R(z.fz)=cc} : [ € lg, 8], 7s = 00} C {f 1: f € [g,h], 7y = o0}
(because Niz:f(z)=c0} = R{z:f(z)=c0})- FOI the rest, let us note the following:

(a) f €lg,h] and 75 < 00 = f 1€ [g, A]].

(b) f €lg,h] and 75 = co = f 1€ [g, h]||.

(¢) felghlll = Fe{f1:f€lghl,s <oo}U{fI: f €lg,hl,7; = oo}
(@ Fe{ft:felghlry<oo}= Fe{f1:felgh]}

To prove that [g,h]|| ={f T: f € i[g, h]} it therefore remains to show that

Fe{fl:felghl,m=00t=>Fe{f1:felghl}

But this is clear because every function in {f |: f € [g, k], 7s = oo} lies in [g, h]. Since
[9,R]|| C [g,Ns(n)] is obvious, this completes the proof of (2).

(3) If h is not an aleph function, then Rgn) ¢ [g, hl-

Corollary 22 Let f,g,h € ERV(R"), where g X h, and assume that

1. h is not an aleph function.

2. f €19, Nsny]-

3. For each t > 0, there is an z € S(h) \ {z : h(z) = oo} such that h(z) +1t < f(z).
Then f € [g,Rsw] \ [9, P]l-

Proof Assume on the contrary that f € [g,h]||. Then there is a ¢ € [g,h] and a t > 0 such
that f = ¢+ (0,t). Let z € S(h)\ {z : h(z) = oo} be such that h(z)+t < f(z). Since
¢(z) < h(z), it follows from f = ¢ + (0,t) that f(z) < h(z) + ¢, which contradicts
h(z) +t < f(z). Hence f ¢ [g, h]|| and this completes the proof.

Remark 28 If g,h € ERV(R"), then the operators e, (erosion by g), o, and Ogh are given
for all f € ERV(R") and x € ™ by the following.

1 (/@) =supft: g % f — (@ 1)}
2. 6,(f)(z) =sup{t: f — (x,t) < h}.
3. ogn(f)(z) =sup{t: g X f—(z,t) X h}.

Remark 29 If g,h € ERV(R") and g < h, then we have the following.
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1. {f €g,h] : 7y < o0} = {f € [g,h] : 4(f)(0) < o0}
2. {f €lg,h]: 7y = 0o} = {f € [9,h] : £,(f)(0) = oo}

Remark 30 Ifg € ERV(R"), then V(e,) = 9, Rwn], there is a unique operator s, (dilation by
g) on ERV(R") whose upper adjoint is e, (i.e., (g4,5,) is an adjunction), andV f € ERV(R")

so(f) =inf{u € ERVIR") : f < e,(u)}.

Proposition 41 If g,h € ERV(R"), then V(ogn) = V(ey) N V(04)-

Proof By Lemma 18, V(ag) C V(e,) NV(6r) = [g, Rgn] N [Rg, A|l. If @ € V(ogr) = (g, ],
then according to Proposition 40 thereis a ¢ € [g, k] and a t > 0 such that ¢ = ¢+(0, ).
Thus it is clear that ¢ € [g,Rgs]. Since [Rg,h]|| = {f T: f € [N, h]} (again by
Proposition 40) and ¢ € [Ng, h], it is also clear that ¢ € [Rg, Al||.

Corollary 23 If ¢ is an R,y -invariant operator on ERV(R™), then the Ronse decomposi-
tion 1 = sup{og : [g,h] C V(¥)} (where the supremum is relative to Og,,,,) can be written

9 = sup{eg A by : [9,h] C V()}.
Theorem 10 We summarize several previous results as follows.

1. Agr ={0‘gh2h=NA,A€P(§Rn)}.

n+1
2. Er,,, ={e,: 9 € ERV(E™)}.
3. ﬁRn—Hl = {gh cth=RN4,A€ 'P(%n)}

Thus if 9 is an R,,4;-invariant operator on ERV(R"), then the Ronse decomposition

W = sup{eg A by : [g,h] C V(¥)}

includes terms €, A &, ¢ Ag, +1» i-€., such that 8, is not an anti-dilation (cf. Thm. 8).

4.2 Example 2: £ = P(R™)

Next we consider the powerset P(R™) (m a positive integer) with the ordering relation C
and the associated lattice operations N and U. It is well known that (P(R™), C) is complete.

Remark 31 If AC P(R™), thensupA=U{A: A€ A} andinf A=N{A: Aec A}.

It is also well known that the set £ of singleton subsets of ™ is a sup-generating subset of
P(R™); indeed, every subset of R™ is the union of its points.
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Definition 47 Let R, denote the commutative group (R™,+) where + denotes vector ad-
dition in ®™. For each x € R,, (i.e., for each z € R™) and A € P(R™), let

o.(A)=A+z={a+z:0a€ A}
and define the mapping o : Ry, X P(R™) — P(R™) by oz, A) = A+ z.

Proposition 42 (R,,,0) is an effective group action on P(R™), o, is an automorphism of
P(R™) for all z € Ry, and (Rm,0) acts £-admissably on P(R™).

Remark 32 A mapping ¢ : P(R™) — P(R™) is (R, 0)-invariant (or more briefly Ry, -
invariant) if and only if Y(A+ z) = Y(A) + z for all A€ P(R™) and z € Rnn.

Definition 48 To define the kernels of R,-invariant operators on P(R™), let the origin O
of R™ be the reference element of £.

Accordingly, if ¢ is an R,,-invariant operator on P(R™), then the kernel of ¢ is given by
V() ={A e P(R™):0ey(A)}

Proposition 43 If ¢ is an R,,-invariant operator on P(R™) with kernel V(¢), then for
all A € P(R™) it follows that Yp(A) = U{z € R™ : A—z € V(¥)}. If YV C P(R™), then
the operator ¢ defined on P(R™) by p(A) = U{z € R™ : A—z € V} (A € P(R™)) is
R, -tnvariant and the kernel of v is V.

Proof The first part is simply the straightfoward transcription of the general result ¥(z) =
V{n € £: 7_,(z) € V(¢)} to the case at hand. The rest is Proposition 30, with the
difference that V() = V rather than V(¢) D V. To prove the latter we simply evaluate

V)={AePR):0cp(A)}={AcP®R™):0e|J{zeR™: A-2z€V}}.
Thus A € V(p) if andonlyif A=A —-0€ V.

Thus, in the case of this example, the lattice isomorphism 3 — V(¢) of Og onto K(L) is
actually onto the lattice of all subsets of P(R™), i.e., every subset of P(R™) is a kernel set,
and the complete lattice of R,,-invariant operators on P(R™) is isomorphic to the complete

lattice (P(P(R™)),N, V).

Remark 33 If B,C € P(R™), then the operators eg (erosion by B), bc, and opc are given
for all A € P(R™) by the following.

1. eg(A)=U{z eR™:BC A—=z}.
2. bc(A)=U{zr eR™: A—z CC}.
3. UBC(A):U{.’EeéRmZBCA—.TCC}.
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Proposition 44 If B,C € P(R™), then we have the following.
1. V(eg) ={A e P(®™): BC A} = [B,R™].
2. V(bc) ={AeP®"): Ac C}=0,C).
3. V(ogc) ={A € P(R™): BC AC C} = [B,C] = V() NV(dc).
4. If B¢ C, then opc(A) =0 for all A € P(R™) and V(opc) = 0.

Proof For (1) we have V(eg) = {A:0€ U{z € R™ : B C A—=z}}. Thus A € V(ep) if
and only if B C A—0 = A. (2) and (3) follow in the same obvious manner, and (4) is
simply the transcription of the general result of Remark 13.

Corollary 24 If B,C € P(R™), then cpc = €p A Sc.
Lemma 22 If C € P(R™), then d¢ is an anti-dilation on P(R™).

Proof Let A be an arbitrary subset of P(R™). Then EC(U A =U{zeR™:UA—z CC}.
Thus dc(UJ.A) is the set of points z such that the translate A — x of every A € A is
contained in C. Consequently,

So(UA) ={U{ze®R™: A—2CCt: Ac A} =({0c(A) : A € A}.

In view of this result, we call ¢ anti-dilation by C.

Remark 34 Ifz € R™, then the only element of ¢ that {z} is C-comparable with is {z}.

4.3 Example 3: £, = ERV(R"?) and L, = P(R"H})

Here is the first example in which the domain and range lattices are distinct. In this case,
the sup-generating subset £ of L, is the set of singletons {(z,t) : z € R",t € R} of R+,
R, is the group (R"+!,+), o is given by

o((z,t),A) = A+ (z,t) = {(a+z,7+1): (a,7) € A},

and s is given by s((z,t), f) = f + (z,t). As in Example 2, (R,41,0) acts effectively as
a group of automorphisms on L, and also acts {-admissably on L. As in Example 1,
X = {n.:: x € R",t € R} is a sup-generating subset of Ly, (Rn41,5) acts effectively as a
group of automorphisms on £;, and (R, s) acts X-admissably on L;.

~ We choose r = 790 and p = (0,0) as the reference elements of X and ¢, respectively, and
obtain the bijections £ — 7¢ and = +—— Tz of £ and X, respectively, onto the automorphism
groups ({o(z : (z,t) € Ruy1},0) and ({Sy : (2,t) € Ruyqi1},0); here, 7z = oy, and
Tz = s,,.. Moreover, the natural bijection £ — = of £ onto X' given by (z,t) = 7., is
such that gp(z.s) = Grne.s 1.6, Ozgy = Ty, for all (z,t) € Ryyy. We note the following:
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(A) (4,=) and (X, <) are poset isomorphic via (z,t) — 7z,

(B) (¢,<) and (T, =<,) are poset isomorphic via (z,t) —— %(x,t).
(C
(D

Thus we see that (0, <,) and (T, <,) are poset isomorphic via (z ) — T(z,1)-

) (X,=) and ({T,, : (z,t) € Rnt1}, =p) are poset isomorphic via 14 — Ty, .-
)

({T... : (z,t) € Rut1}, =p) and (O, <) are poset isomorphic via Ty, , — 0(z,)-

Remark 35 A mapping ¢ : ERV(R") — P(R") is (Rp41,0)-tnvariant (or more briefly
R,..1-invariant) if and only if Y(f+(z,t)) = Y(f)+(z,t) V f € ERV(R") and (z,t) € Rny1.

Accordingly, if ¢ : ERV(R") — P(R"!) is R,41-invariant, then
V(%) = {f € ERV(R") : (0,0) C ¥(/)}.

Proposition 45 If ¢ : ERV(R") — P(R™!) is R,41-tnvariant with kernel V(i) then
for all f € ERV(R™) it follows that ¥(f) = U{(z,t) € R : f — (z,t) € V(¥)}. If
VY c ERV(R™), then the mapping ¢ defined on ERV(R™) by

o(f) = U{(z, ) eR™" - f — (z,8) €V}
18 R,41-invariant and the kernel of ¢ is V.

Thus, in the case of this example, the lattice isomorphism 9 +—— V() of OF% onto K; is
actually onto the lattice of all subsets of ERV(R"), i.e., every subset of ERV(R") is a kernel
set, and the complete lattice of R, i-invariant maps of ERV (") into P(R™*?) is isomorphic

to the complete lattice (P(ERV(R™)),N,U).
Remark 36 If f,g,h € ERV(R"), then we have the following.

1. &4(f) =U{(z,1) : g 2 f — (z,1)} and V(e,) = [g, Ran].

2. 5u(f) = U{(z,) : f — (z,t) X b} and V(én) = [Ro, A].

8. ogn(f) =U{(z,t) 1 g 2 f = (z,8) 2 h} and V(og) = [9, h]-

4. €4 18 an erosion, bn is an anti-dilation, and Ogh = €g N\ op is sup-generating.
If h € ERV(R"), then 8, is called anti-dilation by h.

Remark 37 Ify : ERV(R") — P(R"*!) is Ryi1-invariant, then the Ronse decomposition
¥ = sup{og : [g,h] C V(¥)} can be written ¥ = sup{eg A dn : [9,h] C V(¥)}, and ogr is a
sup-generating mapping for all g,h € ERV(R").

This completes the illustrative examples.
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5 Closed Kernel Conjecture

For the definitions of and theoretical interrelations among a number of the concepts used in
this section, the reader will have to have recourse to the previous work [3]; indeed, to include
such material here would considerably lengthen this already very long report.

5.1 Preliminary Considerations

Definition 49 Let X be a topological space, let G be a topological group, let H : g —= o,
be a homomorphism of G onto a group ({0, : g € G},0) of transformations of X, and let
the mapping o : G x X — X be defined by 0(g,z) = 0,(x). The group action (G, o) thusly
defined on X is called a continuous action if o is a continuous map. :

Remark 38 Note the following facts.

1. If X is a topological space, G is a topological group, and (G,o) is a continuous group
action on X, then oy is a homeomorphism of X for all g € G.

2. If L is a lattice with a topology, if G is a topological group, and if (G,o) acts
continuously and effectively on £ as a group of lattice automorphisms, then
each o4 is both a lattice isomorphism and a homeomorphism of L, i.e., each o, is an
automorphism of £ relative to both its lattice and topological structure.

Our interest in this topological addition lies in the situation of the above remark when G
is abelian and £ is a UC lattice [3, Def. 9] with the topology m(L) [3, Def. 13]. Let us
formalize and elaborate on this situation.

Definition 50 If £ is a UC lattice with the topology m(L), if G is an abelian topological
group, and if (G,0) acts continuously and effectively as a group of automorphisms on L,
then we will say that (G, o) acts m-admissably on L.
If L additionally has a sup-generating subset ¢, and if (G,0) also acts £-admissably on L,
then we will say that (G, o) acts mf-admissably on L.

Recall that if (G,0) acts f-admissably, then (G, o) is a transitive-regular action on ¢, i.e.,
for each (&,7) € £ x £ there is exactly one gg, € G such that o, () = 1. In fact, for each
fixed £ € £ the mapping 7 — g¢, is a bijection of £ onto G. In the case of mf-admissability,
since £ has its relative M-topology [3, Def. 13] and G has its topological group topology, we
may further inquire as to the continuity properties of the map (§,7) — gg, of £ x £ onto G.

Definition 51 Let £ be a UC lattice with a sup-generating subset £, let G be an abelian
topological group, and let (G,0) act ml-admissably on L. If (€,m) — g, is a continuous
map of £ x £ onto G, then (G, o) will be called a totally mf-admissable action on L.

Proposition 46 If (G, 0) is a totally ml-admissable action on a UC lattice L, then for each
fized & € £ the bijection n — g¢, is a homeomorphism of £ onto G.
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Proof It is clear that  — g, is a continuous bijection of £ onto G for each fixed € £.
The inverse of 7 — gg, is given by g — o(g,&). Since o is continuous on G x L, it
is clear that g — (g, &) is continuous on G for each fixed £ € £.

With a totally m/-admissable action, then, we have the family {Z, : £ € £} of topological-
group isomorphisms between (¢, +) and (G, -) given by Z¢ : n — gey.
5.2 Statement of Conjecture and its Motivation

For the conjecture, we assume the following:

1. £; is a UC lattice with a sup-generating subset X', £, is a complete lattice with a
meet-complete UC sublattice F, and L, has a sup-generating subset ¢ C F.

2. M(£,;) and M(F) are non-bicontinuous [4] Matheron spaces [3, Def. 13, sect. 3.4].
3. There is a complete continuous homomorphism @ of F onto L;.

4. Let > denote the way above relation [3, Def. 7] in either £; or . Then n % 7 for
alpe X and £ B Eforall € € 4.

5. G is an abelian topological group that acts effectively as a group of automorphisms on
both £; and £, by means of the maps s and o.

6. (G, s) acts in a totally mé-admissable fashion on L.

7. (G, o) acts X-admissably on L,, and acts in a totally mAX-admissable fashion on F.

Closed Kernel Conjecture. A G-invariant mapping v : L1 — Ly is into F and USC if
and only if V(¢) is a closed subset of L;.

The motivation for this conjecture lies in the following two of its special cases.

Theorem 11 Let F denote the complete lattice of closed subsets of R™ relative to the meet
and join operations N and U, and let P denote the complete lattice of all subsets of R",
likewise relative to the meet and join operations N and U. Let iy : F — P be translationally

invariant in the sense that

Y(F+z)=9(F)+z
for all F € F and all x € R™. Then ¢ is into F and USC if and only if the kernel of ¢ is
closed in F relative to the hit-miss topology of F.

The setting of this “closed kernel theorem,” which in essence was proved by Matheron [12], is
closed Euclidean set morphology. The context of the second special “closed kernel theorem,”
which was proved in [2], is upper semicontinuous function morphology; it reads as follows.
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Theorem 12 Let ERV(R™) denote the complete lattice of extended real valued functions on
R™ relative to the meet and join operations given by the pointwise infimum and supremum,
and let USC(R™) denote the complete lattice of upper semicontinuous functions in ERV(R"),
likewise relative to the meet and join operations given by the pointwise infimum and supre-
mum. Let ¢ : USC(R") — ERV(R"™) be translationally invariant in the sense that

U(f + (z,t)) = (f) + (z,t) for all f € USC(R") and all (z,t) € R* x R,
where g + (z,t) is defined for all g € ERV(R") and all (z,t) € R* x R by (9 + (z,t))(y) =
gy —z) +t. Then ¢ is into USC(R") and USC if and only if the kernel of ¢ is closed in
USC(R™) relative to the M-topology of USC(R™).

It is now, finally, time to conclude.
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6 Conclusion

The Banon-Barrera theory of complete-lattice mappings has succeeded in further and sub-
stantially elaborating the developments of Serra’s school [5], which implemented its view
that mathematical morphology is essentially a theory of mappings of one com-
plete lattice into another, that image universes are most generally modeled by complete
lattices and that the morphologically useful transformations of images are mappings of one
such image universe into itself or perhaps another. As we have seen, the Banon-Barrera the-
ory develops pure lattice theoretical characterizations of the basic morphological mappings
of erosion, dilation, etc, and shows how all complete-lattice mappings can be represented
lattice algebraically in terms of these basic morphoelogical mappings. Their decomposition
theorem and their concept of a morphological connection are very general and powerful
theoretical tools for the investigation of morphological questions that can be formulated lat-
tice algebraically. As we have also seen, the work of Heijmanns and Ronse has made this
lattice algebraic view more concrete and intuitive by postulating the additional structure
of a sup-generating subset together with a compatible abelian subgroup G of the lattice’s
automorphism group in order to abstractly model the translation-invariance present in con-
crete morphology theories, and have thereby laid the groundwork for the investigation of
other possible morphological symmetries. For Heijmanns and Ronse, mathematical
morphology is in essence a theory of G-invariant complete-lattice mappings.
This report has investigated the question of how G-invariant complete-lattice maps be-
have in contradistinction to general complete-lattice maps, and has more specifically deter-
mined the extent to which the general theory of Banon and Barrera is reproduced in the
restricted realm of G-invariant complete-lattice maps. By deriving, wherever possible and
appropriate, the G-invariant versions of the general theory’s results, I have shown that most
of the Banon-Barrera theory is indeed reproduced for G-invariant maps, and have moreover
shown how and in what form it is reproduced. In this way, the two theories have been joined
together to their mutual benefit and further developed. This accomplishment, together with
the conjecture I have presented—assuming that it turns out to be true, either as stated or
in some modified form—has come close to realizing the previously stated goal [3] of achiev-
ing an abstract mathematical system that exhibits most of the algebraic and topological
properties of the more concrete morphologies, one that is consequently a much more general
morphological theory with a considerably wider range of application, and so one that should
make new and more effective applications to ATR and computer vision problems possible.
Apart from resolving the status of the “closed kernel conjecture” and elaborating the impli-
cations that arise therefrom, the remaining element needed to fully reach the stated goal is
the generalization of the probabilistic aspect of the standard morphologies to the mentioned
abstract mathematical system, i.e., the effective generalization of Matheron’s concept of a
random closed set to that of a random variable in an M-topologized upper continuous lattice.
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